Answer to Question #197611 in Differential Equations for Esha

Question #197611

Reduce to canonical form

uxx - uxy + uyy + ux = 0


1
Expert's answer
2021-05-24T18:13:08-0400
"A=1, B=-1, C=1"

"B^2-4AC=1-4=-3<0"

The given partial differential equation is elliptic.

 The characteristic equations are given by 


"\\dfrac{dy}{dx}=\\dfrac{B-\\sqrt{B^2-4AC}}{2A}=\\dfrac{-1-\\sqrt{-3}}{2(1)}"

"=\\dfrac{-1-i\\sqrt{3}}{2}"

and



"\\dfrac{dy}{dx}=\\dfrac{B+\\sqrt{B^2-4AC}}{2A}=\\dfrac{-1+\\sqrt{-3}}{2(1)}"

"=\\dfrac{-1+i\\sqrt{3}}{2}"


Integrating these two equations, we get 


"y=x(\\dfrac{-1-i\\sqrt{3}}{2})+c_1"

and


"y=x(\\dfrac{-1+i\\sqrt{3}}{2})+c_2"

Assume that


"\\xi=y+x(\\dfrac{1+i\\sqrt{3}}{2})"

"\\eta=y+x(\\dfrac{1-i\\sqrt{3}}{2})"

The transformation


"\\alpha=\\dfrac{1}{2}(\\xi+\\eta)"

"\\beta=\\dfrac{1}{2i}(\\xi-\\eta)"


"\\alpha=y+x"

"\\beta=\\dfrac{\\sqrt{3}}{2}x"

"\\alpha_x=1, \\alpha_y=1"

"\\alpha_{xx}=0, \\alpha_{xy}=0, \\alpha_{yy}=0"

"\\beta_x=\\dfrac{\\sqrt{3}}{2}, \\beta_y=0"

"\\beta_{xx}=0, \\beta_{xy}=0, \\beta_{yy}=0"

"A=1, B=-1, C=1,D=1, E=0, F=0, G=0"


"\\bar{A}=A\\alpha_x^2+B\\alpha_x\\alpha_y+C\\alpha_y^2=1-1+1=1"

"\\bar{B}=2A\\alpha_x\\beta_x+B(\\alpha_x\\beta_y+\\alpha_y\\beta_x)+2C\\alpha_y\\beta_y"

"=2(1)(\\dfrac{\\sqrt{3}}{2})-1(0+(1)\\dfrac{\\sqrt{3}}{2})+2(1)(0)=\\dfrac{\\sqrt{3}}{2}"


"\\bar{C}=A\\beta_x^2+B\\beta_x\\beta_y+2C\\alpha_y\\beta_y="

"=\\dfrac{3}{4}+0+0=\\dfrac{3}{4}"

"\\bar{D}=A\\alpha_{xx}+B\\alpha_{xy}+C\\alpha_{yy}+D\\alpha_x+E\\alpha_y=1"

"\\bar{E}=A\\beta_{xx}+B\\beta_{xy}+C\\beta_{yy}+D\\beta_x+E\\beta_y=\\dfrac{\\sqrt{3}}{2}"

"\\bar{F}=F=0, \\bar{G}=G=0"


"u_{\\alpha\\alpha}+\\dfrac{\\sqrt{3}}{2}u_{\\alpha\\beta}+\\dfrac{\\sqrt{3}}{2}u_{\\beta\\beta}+u_{\\alpha}+\\dfrac{\\sqrt{3}}{2}u_\\beta=0"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS