A=1,B=−1,C=1
B2−4AC=1−4=−3<0The given partial differential equation is elliptic.
The characteristic equations are given by
dxdy=2AB−B2−4AC=2(1)−1−−3
=2−1−i3 and
dxdy=2AB+B2−4AC=2(1)−1+−3
=2−1+i3
Integrating these two equations, we get
y=x(2−1−i3)+c1 and
y=x(2−1+i3)+c2
Assume that
ξ=y+x(21+i3)
η=y+x(21−i3) The transformation
α=21(ξ+η)
β=2i1(ξ−η)
α=y+x
β=23x
αx=1,αy=1
αxx=0,αxy=0,αyy=0
βx=23,βy=0
βxx=0,βxy=0,βyy=0
A=1,B=−1,C=1,D=1,E=0,F=0,G=0
Aˉ=Aαx2+Bαxαy+Cαy2=1−1+1=1
Bˉ=2Aαxβx+B(αxβy+αyβx)+2Cαyβy
=2(1)(23)−1(0+(1)23)+2(1)(0)=23
Cˉ=Aβx2+Bβxβy+2Cαyβy=
=43+0+0=43
Dˉ=Aαxx+Bαxy+Cαyy+Dαx+Eαy=1
Eˉ=Aβxx+Bβxy+Cβyy+Dβx+Eβy=23
Fˉ=F=0,Gˉ=G=0
uαα+23uαβ+23uββ+uα+23uβ=0
Comments