Reduce to canonical form
uxx - uxy + uyy + ux = 0
"B^2-4AC=1-4=-3<0"
The given partial differential equation is elliptic.
The characteristic equations are given by
"=\\dfrac{-1-i\\sqrt{3}}{2}"
and
"=\\dfrac{-1+i\\sqrt{3}}{2}"
Integrating these two equations, we get
and
Assume that
"\\eta=y+x(\\dfrac{1-i\\sqrt{3}}{2})"
The transformation
"\\beta=\\dfrac{1}{2i}(\\xi-\\eta)"
"\\beta=\\dfrac{\\sqrt{3}}{2}x"
"\\alpha_x=1, \\alpha_y=1"
"\\alpha_{xx}=0, \\alpha_{xy}=0, \\alpha_{yy}=0"
"\\beta_x=\\dfrac{\\sqrt{3}}{2}, \\beta_y=0"
"\\beta_{xx}=0, \\beta_{xy}=0, \\beta_{yy}=0"
"A=1, B=-1, C=1,D=1, E=0, F=0, G=0"
"\\bar{B}=2A\\alpha_x\\beta_x+B(\\alpha_x\\beta_y+\\alpha_y\\beta_x)+2C\\alpha_y\\beta_y"
"=2(1)(\\dfrac{\\sqrt{3}}{2})-1(0+(1)\\dfrac{\\sqrt{3}}{2})+2(1)(0)=\\dfrac{\\sqrt{3}}{2}"
"=\\dfrac{3}{4}+0+0=\\dfrac{3}{4}"
"\\bar{D}=A\\alpha_{xx}+B\\alpha_{xy}+C\\alpha_{yy}+D\\alpha_x+E\\alpha_y=1"
"\\bar{E}=A\\beta_{xx}+B\\beta_{xy}+C\\beta_{yy}+D\\beta_x+E\\beta_y=\\dfrac{\\sqrt{3}}{2}"
"\\bar{F}=F=0, \\bar{G}=G=0"
Comments
Leave a comment