Δ=a122−a11a22=(−21)2−1⋅1=−43<0 - we have an equation of elliptic type.
Characteristic equation:
dxdy=a11a12+Δ=1−21+23i⇒y=−2x+23ix+C1
or
dxdy=a11a12−Δ=1−21−23i⇒y=−2x−23ix+C2
Let
ξ(x,y)=2C1+C2=21(y+2x−23ix+y+2x+23ix)=y+2x
η(x,y)=2iC2−C1=2i1(y+2x+23ix−y−2x+23ix)=23x
u(x,y)=v(ξ;η)
Then
ux=vξξx+vηηx=21vξ+23vη
uy=vξξy+vηηy=vξ
uxx=21(vξξξx+vξηηx)+23(vηξξx+vηηηx)
=21(21vξξ+23vξη)+23(21vηξ+23vηη)
=41vξξ+23vξη+43vηη
uyy=vξξξy+vξηηy=vξξ
uyx=vξξξx+vξηηx=21vξξ+23vξη
Substitute the found values into the original equation:
41vξξ+23vξη+43vηη−21vξξ−23vξη
+vξξ+21vξ+23vη=0
43vξξ+43vηη=−21vξ−23vη
vξξ+vηη=−32vξ−323vη
Answer:
vξξ+vηη=−32vξ−323vη,where
ξ(x,y)= y+2x, η(x,y)=23x,
u(x,y)=v(ξ;η)
Comments
Leave a comment