Δ = a 12 2 − a 11 a 22 = ( − 1 2 ) 2 − 1 ⋅ 1 = − 3 4 < 0 \Delta = a_{12}^2 - {a_{11}}{a_{22}} = {(-\frac{1}{2})^2} - 1 \cdot 1 = - \frac{3}{4} < 0 Δ = a 12 2 − a 11 a 22 = ( − 2 1 ) 2 − 1 ⋅ 1 = − 4 3 < 0 - we have an equation of elliptic type.
Characteristic equation:
d y d x = a 12 + Δ a 11 = − 1 2 + 3 2 i 1 ⇒ y = − x 2 + 3 2 i x + C 1 \frac{{dy}}{{dx}} = \frac{{{a_{12}} + \sqrt \Delta }}{{{a_{11}}}} = \frac{{-\frac{1}{2} + \frac{{\sqrt 3 }}{2}i}}{1} \Rightarrow y =- \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix + {C_1} d x d y = a 11 a 12 + Δ = 1 − 2 1 + 2 3 i ⇒ y = − 2 x + 2 3 i x + C 1
or
d y d x = a 12 − Δ a 11 = − 1 2 − 3 2 i 1 ⇒ y = − x 2 − 3 2 i x + C 2 \frac{{dy}}{{dx}} = \frac{{{a_{12}} - \sqrt \Delta }}{{{a_{11}}}} = \frac{{-\frac{1}{2} - \frac{{\sqrt 3 }}{2}i}}{1} \Rightarrow y = -\frac{x}{2} - \frac{{\sqrt 3 }}{2}ix + {C_2} d x d y = a 11 a 12 − Δ = 1 − 2 1 − 2 3 i ⇒ y = − 2 x − 2 3 i x + C 2
Let
ξ ( x , y ) = C 1 + C 2 2 \xi (x,y) = \frac{{{C_1} + {C_2}}}{2} ξ ( x , y ) = 2 C 1 + C 2 = 1 2 ( y + x 2 − 3 2 i x + y + x 2 + 3 2 i x ) = y + x 2 = \frac{1}{2}\left( {y + \frac{x}{2} - \frac{{\sqrt 3 }}{2}ix + y+\frac{x}{2} + \frac{{\sqrt 3 }}{2}ix} \right) = y +\frac{x}{2} = 2 1 ( y + 2 x − 2 3 i x + y + 2 x + 2 3 i x ) = y + 2 x
η ( x , y ) = C 2 − C 1 2 i \eta \left( {x,y} \right) = \frac{{{C_2} - {C_1}}}{{2i}} η ( x , y ) = 2 i C 2 − C 1 = 1 2 i ( y + x 2 + 3 2 i x − y − x 2 + 3 2 i x ) = 3 2 x = \frac{1}{{2i}}\left( {y +\frac{x}{2} + \frac{{\sqrt 3 }}{2}ix - y - \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix} \right) = \frac{{\sqrt 3 }}{2}x = 2 i 1 ( y + 2 x + 2 3 i x − y − 2 x + 2 3 i x ) = 2 3 x
u ( x , y ) = v ( ξ ; η ) u(x,y) = v\left( {\xi ;\,\eta } \right) u ( x , y ) = v ( ξ ; η )
Then
u x = v ξ ξ x + v η η x = 1 2 v ξ + 3 2 v η {u_x} = {v_\xi }{\xi _x} + {v_\eta }{\eta _x} = \frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta } u x = v ξ ξ x + v η η x = 2 1 v ξ + 2 3 v η
u y = v ξ ξ y + v η η y = v ξ {u_y} = {v_\xi }{\xi _y} + {v_\eta }{\eta _y} = {v_\xi } u y = v ξ ξ y + v η η y = v ξ
u x x = 1 2 ( v ξ ξ ξ x + v ξ η η x ) + 3 2 ( v η ξ ξ x + v η η η x ) {u_{xx}} = \frac{1}{2}\left( {{v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x}} \right) + \frac{{\sqrt 3 }}{2}\left( {{v_{\eta \xi }}{\xi _x} + {v_{\eta \eta }}{\eta _x}} \right) u xx = 2 1 ( v ξξ ξ x + v ξ η η x ) + 2 3 ( v η ξ ξ x + v ηη η x )
= 1 2 ( 1 2 v ξ ξ + 3 2 v ξ η ) + 3 2 ( 1 2 v η ξ + 3 2 v η η ) = \frac{1}{2}\left( { \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }}} \right) + \frac{{\sqrt 3 }}{2}\left( { \frac{1}{2}{v_{\eta \xi }} + \frac{{\sqrt 3 }}{2}{v_{\eta \eta }}} \right) = 2 1 ( 2 1 v ξξ + 2 3 v ξ η ) + 2 3 ( 2 1 v η ξ + 2 3 v ηη )
= 1 4 v ξ ξ + 3 2 v ξ η + 3 4 v η η = \frac{1}{4}{v_{\xi \xi }} +\frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + \frac{3}{4}{v_{\eta \eta }} = 4 1 v ξξ + 2 3 v ξ η + 4 3 v ηη
u y y = v ξ ξ ξ y + v ξ η η y = v ξ ξ {u_{yy}} = {v_{\xi \xi }}{\xi _y} + {v_{\xi \eta }}{\eta _y} = {v_{\xi \xi }} u yy = v ξξ ξ y + v ξ η η y = v ξξ
u y x = v ξ ξ ξ x + v ξ η η x = 1 2 v ξ ξ + 3 2 v ξ η {u_{yx}} = {v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x} = \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }} u y x = v ξξ ξ x + v ξ η η x = 2 1 v ξξ + 2 3 v ξ η
Substitute the found values into the original equation:
1 4 v ξ ξ + 3 2 v ξ η + 3 4 v η η − 1 2 v ξ ξ − 3 2 v ξ η \frac{1}{4}{v_{\xi \xi }} +\frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + \frac{3}{4}{v_{\eta \eta }}- \frac{1}{2}{v_{\xi \xi }} -\frac{{\sqrt 3 }}{2}{v_{\xi \eta }} 4 1 v ξξ + 2 3 v ξ η + 4 3 v ηη − 2 1 v ξξ − 2 3 v ξ η
+ v ξ ξ + 1 2 v ξ + 3 2 v η = 0 +{v_{\xi \xi }}+\frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta }=0 + v ξξ + 2 1 v ξ + 2 3 v η = 0
3 4 v ξ ξ + 3 4 v η η = − 1 2 v ξ − 3 2 v η \frac{3}{4}{v_{\xi \xi }} + \frac{3}{4}{v_{\eta \eta }}=-\frac{1}{2}{v_\xi } - \frac{{\sqrt 3 }}{2}{v_\eta } 4 3 v ξξ + 4 3 v ηη = − 2 1 v ξ − 2 3 v η
v ξ ξ + v η η = − 2 3 v ξ − 2 3 3 v η {v_{\xi \xi }} + {v_{\eta \eta }} =- \frac{2}{3}{v_\xi } - \frac{{2\sqrt 3 }}{3}{v_\eta } v ξξ + v ηη = − 3 2 v ξ − 3 2 3 v η
Answer:
v ξ ξ + v η η = − 2 3 v ξ − 2 3 3 v η , {v_{\xi \xi }} + {v_{\eta \eta }} = -\frac{2}{3}{v_\xi } - \frac{{2\sqrt 3 }}{3}{v_\eta }, v ξξ + v ηη = − 3 2 v ξ − 3 2 3 v η , where
ξ ( x , y ) = y + x 2 , η ( x , y ) = 3 2 x , \xi (x,y) = \ y + \frac{x}{2},\ \eta \left( {x,y} \right) = \frac{{\sqrt 3 }}{2}x, ξ ( x , y ) = y + 2 x , η ( x , y ) = 2 3 x ,
u ( x , y ) = v ( ξ ; η ) u(x,y) = v\left( {\xi ;\,\eta } \right) u ( x , y ) = v ( ξ ; η )
Comments