"\\Delta = a_{12}^2 - {a_{11}}{a_{22}} = {(-\\frac{1}{2})^2} - 1 \\cdot 1 = - \\frac{3}{4} < 0"Β - we have an equation of elliptic type.
Characteristic equation:
"\\frac{{dy}}{{dx}} = \\frac{{{a_{12}} + \\sqrt \\Delta }}{{{a_{11}}}} = \\frac{{-\\frac{1}{2} + \\frac{{\\sqrt 3 }}{2}i}}{1} \\Rightarrow y =- \\frac{x}{2} + \\frac{{\\sqrt 3 }}{2}ix + {C_1}"
or
"\\frac{{dy}}{{dx}} = \\frac{{{a_{12}} - \\sqrt \\Delta }}{{{a_{11}}}} = \\frac{{-\\frac{1}{2} - \\frac{{\\sqrt 3 }}{2}i}}{1} \\Rightarrow y = -\\frac{x}{2} - \\frac{{\\sqrt 3 }}{2}ix + {C_2}"
Let
"\\xi (x,y) = \\frac{{{C_1} + {C_2}}}{2}""= \\frac{1}{2}\\left( {y + \\frac{x}{2} - \\frac{{\\sqrt 3 }}{2}ix + y+\\frac{x}{2} + \\frac{{\\sqrt 3 }}{2}ix} \\right) = y +\\frac{x}{2}"
"\\eta \\left( {x,y} \\right) = \\frac{{{C_2} - {C_1}}}{{2i}}""= \\frac{1}{{2i}}\\left( {y +\\frac{x}{2} + \\frac{{\\sqrt 3 }}{2}ix - y - \\frac{x}{2} + \\frac{{\\sqrt 3 }}{2}ix} \\right) = \\frac{{\\sqrt 3 }}{2}x"
"u(x,y) = v\\left( {\\xi ;\\,\\eta } \\right)"
Then
"{u_x} = {v_\\xi }{\\xi _x} + {v_\\eta }{\\eta _x} = \\frac{1}{2}{v_\\xi } + \\frac{{\\sqrt 3 }}{2}{v_\\eta }"
"{u_y} = {v_\\xi }{\\xi _y} + {v_\\eta }{\\eta _y} = {v_\\xi }"
"{u_{xx}} = \\frac{1}{2}\\left( {{v_{\\xi \\xi }}{\\xi _x} + {v_{\\xi \\eta }}{\\eta _x}} \\right) + \\frac{{\\sqrt 3 }}{2}\\left( {{v_{\\eta \\xi }}{\\xi _x} + {v_{\\eta \\eta }}{\\eta _x}} \\right)"
"= \\frac{1}{2}\\left( { \\frac{1}{2}{v_{\\xi \\xi }} + \\frac{{\\sqrt 3 }}{2}{v_{\\xi \\eta }}} \\right) + \\frac{{\\sqrt 3 }}{2}\\left( { \\frac{1}{2}{v_{\\eta \\xi }} + \\frac{{\\sqrt 3 }}{2}{v_{\\eta \\eta }}} \\right)"
"= \\frac{1}{4}{v_{\\xi \\xi }} +\\frac{{\\sqrt 3 }}{2}{v_{\\xi \\eta }} + \\frac{3}{4}{v_{\\eta \\eta }}"
"{u_{yy}} = {v_{\\xi \\xi }}{\\xi _y} + {v_{\\xi \\eta }}{\\eta _y} = {v_{\\xi \\xi }}"
"{u_{yx}} = {v_{\\xi \\xi }}{\\xi _x} + {v_{\\xi \\eta }}{\\eta _x} = \\frac{1}{2}{v_{\\xi \\xi }} + \\frac{{\\sqrt 3 }}{2}{v_{\\xi \\eta }}"
Substitute the found values ββinto the original equation:
"\\frac{1}{4}{v_{\\xi \\xi }} +\\frac{{\\sqrt 3 }}{2}{v_{\\xi \\eta }} + \\frac{3}{4}{v_{\\eta \\eta }}- \\frac{1}{2}{v_{\\xi \\xi }} -\\frac{{\\sqrt 3 }}{2}{v_{\\xi \\eta }}"
"+{v_{\\xi \\xi }}+\\frac{1}{2}{v_\\xi } + \\frac{{\\sqrt 3 }}{2}{v_\\eta }=0"
"\\frac{3}{4}{v_{\\xi \\xi }} + \\frac{3}{4}{v_{\\eta \\eta }}=-\\frac{1}{2}{v_\\xi } - \\frac{{\\sqrt 3 }}{2}{v_\\eta }"
"{v_{\\xi \\xi }} + {v_{\\eta \\eta }} =- \\frac{2}{3}{v_\\xi } - \\frac{{2\\sqrt 3 }}{3}{v_\\eta }"
Answer:Β
"{v_{\\xi \\xi }} + {v_{\\eta \\eta }} = -\\frac{2}{3}{v_\\xi } - \\frac{{2\\sqrt 3 }}{3}{v_\\eta },"whereΒ
"\\xi (x,y) = \\ y + \\frac{x}{2},\\ \\eta \\left( {x,y} \\right) = \\frac{{\\sqrt 3 }}{2}x,"
"u(x,y) = v\\left( {\\xi ;\\,\\eta } \\right)"
Comments
Leave a comment