Answer to Question #197607 in Differential Equations for Esha Asad

Question #197607

Reduce to canonical form :

𝑢𝑥𝑥 − 𝑢𝑥𝑦 + 𝑢𝑦𝑦 + 𝑢𝑥 = 0



1
Expert's answer
2022-01-10T15:59:24-0500
Δ=a122a11a22=(12)211=34<0\Delta = a_{12}^2 - {a_{11}}{a_{22}} = {(-\frac{1}{2})^2} - 1 \cdot 1 = - \frac{3}{4} < 0

 - we have an equation of elliptic type.

Characteristic equation:


dydx=a12+Δa11=12+32i1y=x2+32ix+C1\frac{{dy}}{{dx}} = \frac{{{a_{12}} + \sqrt \Delta }}{{{a_{11}}}} = \frac{{-\frac{1}{2} + \frac{{\sqrt 3 }}{2}i}}{1} \Rightarrow y =- \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix + {C_1}


or


dydx=a12Δa11=1232i1y=x232ix+C2\frac{{dy}}{{dx}} = \frac{{{a_{12}} - \sqrt \Delta }}{{{a_{11}}}} = \frac{{-\frac{1}{2} - \frac{{\sqrt 3 }}{2}i}}{1} \Rightarrow y = -\frac{x}{2} - \frac{{\sqrt 3 }}{2}ix + {C_2}


Let


ξ(x,y)=C1+C22\xi (x,y) = \frac{{{C_1} + {C_2}}}{2}=12(y+x232ix+y+x2+32ix)=y+x2= \frac{1}{2}\left( {y + \frac{x}{2} - \frac{{\sqrt 3 }}{2}ix + y+\frac{x}{2} + \frac{{\sqrt 3 }}{2}ix} \right) = y +\frac{x}{2}


η(x,y)=C2C12i\eta \left( {x,y} \right) = \frac{{{C_2} - {C_1}}}{{2i}}=12i(y+x2+32ixyx2+32ix)=32x= \frac{1}{{2i}}\left( {y +\frac{x}{2} + \frac{{\sqrt 3 }}{2}ix - y - \frac{x}{2} + \frac{{\sqrt 3 }}{2}ix} \right) = \frac{{\sqrt 3 }}{2}x


u(x,y)=v(ξ;η)u(x,y) = v\left( {\xi ;\,\eta } \right)


Then


ux=vξξx+vηηx=12vξ+32vη{u_x} = {v_\xi }{\xi _x} + {v_\eta }{\eta _x} = \frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta }




uy=vξξy+vηηy=vξ{u_y} = {v_\xi }{\xi _y} + {v_\eta }{\eta _y} = {v_\xi }




uxx=12(vξξξx+vξηηx)+32(vηξξx+vηηηx){u_{xx}} = \frac{1}{2}\left( {{v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x}} \right) + \frac{{\sqrt 3 }}{2}\left( {{v_{\eta \xi }}{\xi _x} + {v_{\eta \eta }}{\eta _x}} \right)




=12(12vξξ+32vξη)+32(12vηξ+32vηη)= \frac{1}{2}\left( { \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }}} \right) + \frac{{\sqrt 3 }}{2}\left( { \frac{1}{2}{v_{\eta \xi }} + \frac{{\sqrt 3 }}{2}{v_{\eta \eta }}} \right)

=14vξξ+32vξη+34vηη= \frac{1}{4}{v_{\xi \xi }} +\frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + \frac{3}{4}{v_{\eta \eta }}


uyy=vξξξy+vξηηy=vξξ{u_{yy}} = {v_{\xi \xi }}{\xi _y} + {v_{\xi \eta }}{\eta _y} = {v_{\xi \xi }}




uyx=vξξξx+vξηηx=12vξξ+32vξη{u_{yx}} = {v_{\xi \xi }}{\xi _x} + {v_{\xi \eta }}{\eta _x} = \frac{1}{2}{v_{\xi \xi }} + \frac{{\sqrt 3 }}{2}{v_{\xi \eta }}


Substitute the found values ​​into the original equation:


14vξξ+32vξη+34vηη12vξξ32vξη\frac{1}{4}{v_{\xi \xi }} +\frac{{\sqrt 3 }}{2}{v_{\xi \eta }} + \frac{3}{4}{v_{\eta \eta }}- \frac{1}{2}{v_{\xi \xi }} -\frac{{\sqrt 3 }}{2}{v_{\xi \eta }}

+vξξ+12vξ+32vη=0+{v_{\xi \xi }}+\frac{1}{2}{v_\xi } + \frac{{\sqrt 3 }}{2}{v_\eta }=0


34vξξ+34vηη=12vξ32vη\frac{3}{4}{v_{\xi \xi }} + \frac{3}{4}{v_{\eta \eta }}=-\frac{1}{2}{v_\xi } - \frac{{\sqrt 3 }}{2}{v_\eta }


vξξ+vηη=23vξ233vη{v_{\xi \xi }} + {v_{\eta \eta }} =- \frac{2}{3}{v_\xi } - \frac{{2\sqrt 3 }}{3}{v_\eta }


Answer: 

vξξ+vηη=23vξ233vη,{v_{\xi \xi }} + {v_{\eta \eta }} = -\frac{2}{3}{v_\xi } - \frac{{2\sqrt 3 }}{3}{v_\eta },

where 

ξ(x,y)= y+x2, η(x,y)=32x,\xi (x,y) = \ y + \frac{x}{2},\ \eta \left( {x,y} \right) = \frac{{\sqrt 3 }}{2}x,




u(x,y)=v(ξ;η)u(x,y) = v\left( {\xi ;\,\eta } \right)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment