Question #197461

Find the Laplace Transform of half-wave and full-wave

rectified sine wave given in the following figures.

Take w = 2


1
Expert's answer
2021-05-24T18:57:44-0400

Laplace transform of half wave rectified sine wave is given by -


f(t)= { sin(ωt)sin(\omega t) , 0 < t < πω\dfrac{\pi}{\omega}

{ 0 , πω\dfrac{\pi}{\omega} < t < 2πω\dfrac{2{\pi}}{\omega}


we know that the time period of half wave rectifier is given by T=2πwT=\dfrac{2{\pi}}{w}



If we know the time period of given wave function , then laplace transfrom can be calculated by using formula which is given by


L[f(t)]=11e(sT)0Testf(t)dtL[{f(t)}]=\dfrac{1}{1-e^{(-sT)}}\int_{0}^{T}e^{-st}f(t)dt




L[f(t)]=11e(s2πω)0Testf(t)dtL[{f(t)}]=\dfrac{1}{1-e^{(-s\dfrac {2{\pi}}{\omega})}}\int_{0}^{T}e^{-st}f(t)dt


Now , we will split this integeral in the domain which is given above ,


L[f(t)]=11e(sT)[0πωesTsin(ωt)dtL[{f(t)}]=\dfrac{1}{1-e^{(-sT)}}[\int_{0}^{\dfrac {{\pi}}{\omega}}e^{-sT}sin({\omega}t)dt +πω2πωesT0 dt\int_{\dfrac{\pi}{\omega}}^{\dfrac {2{\pi}}{\omega}}e^{-sT}0 \ dt ].....1)


L[f(t)]=11e(sT)[0πωesTsin(ωt)dt]L[{f(t)}]=\dfrac{1}{1-e^{(-sT)}}[\int_{0}^{\dfrac{\pi}{\omega}}e^{-sT}sin({\omega}t)dt]


We know integeration of eatsin(bt)\int{e^{at}sin(bt)} =eata2+b2[asin(bt)bcos(bt)]\dfrac{e^{at}}{a^{2}+b^{2}}[asin(bt)-bcos(bt)]


now applying the above result in , in the integeral 0πωesTsin(ωt)dt\int_{0}^{\dfrac{\pi}{\omega}}e^{-sT}sin(\omega t)dt


=ests2+(ω)2[ssinωtωcosωt]0πω=\dfrac{e^{-st}}{s^{2}+({\omega })^{2}}[-ssin{\omega}t-{\omega}cos{\omega}t]_{0}^{\dfrac{\pi}{\omega}}


== now putting the limits , in above integeral , we conclude ,


=esπωs2+(ω)2[ssinπωcosπ]e0s2+(ω)2[0ωcos0]=\dfrac{e^{-s\dfrac{\pi}{\omega}}}{s^{2}+({\omega })^{2}}[{-ssin{\pi}-{\omega}cos{\pi}}]-\dfrac{e^{0}}{s^{2}+({\omega })^{2}}[{0-{\omega}cos0}]


=ωs2+ω2\dfrac {\omega}{s^{2}+{\omega}^{2}} (1+esπω1+e^{\dfrac{-s{\pi}}{\omega}} )........2



now putting these integeration result in equation....... 1 ) we get -



11e2sπω\dfrac{1}{1-e^{\dfrac{-2s{\pi}}{\omega}}} [ωs2+ω2(1+esπω)\dfrac{\omega}{s^{2}+{\omega}^{2}}(1+e^{\dfrac{s{\pi}}{\omega}}) ]




This is the laplace transfrom of half wave rectifier .



Laplace transform of full wave rectifier sin equation is -


f(t)= { sin(ωt)sin(\omega t) , 0 < t < πω\dfrac{\pi}{\omega}



The period of function is πω\dfrac{\pi}{\omega}



L[f(t)]=11e(sT)0Testf(t)dtL[{f(t)}]=\dfrac{1}{1-e^{(-sT)}}\int_{0}^{T}e^{-st}f(t)dt



L[f(t)]=11e(sT)0TestsinωtdtL[{f(t)}]=\dfrac{1}{1-e^{(-sT)}}\int_{0}^{T}e^{-st}sin{\omega}tdt



L[f(t)]=11e(sT)[0πωesTsin(ωt)dt]L[{f(t)}]=\dfrac{1}{1-e^{(-sT)}}[\int_{0}^{\dfrac {{\pi}}{\omega}}e^{-sT}sin({\omega}t)dt]




= 11e2sπω[ωs2+ω2(1+esπω)]\dfrac{1}{1-e^{\dfrac{-2s{\pi}}{\omega}}}[\dfrac{\omega}{s^{2}+{\omega}^{2}}(1+e^{\dfrac{s{\pi}}{\omega}})]




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS