Find the Laplace Transform of half-wave and full-wave
rectified sine wave given in the following figures.
Take w = 2
Laplace transform of half wave rectified sine wave is given by -
f(t)= { "sin(\\omega t)" , 0 < t < "\\dfrac{\\pi}{\\omega}"
{ 0 , "\\dfrac{\\pi}{\\omega}" < t < "\\dfrac{2{\\pi}}{\\omega}"
we know that the time period of half wave rectifier is given by "T=\\dfrac{2{\\pi}}{w}"
If we know the time period of given wave function , then laplace transfrom can be calculated by using formula which is given by
"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}\\int_{0}^{T}e^{-st}f(t)dt"
"L[{f(t)}]=\\dfrac{1}{1-e^{(-s\\dfrac {2{\\pi}}{\\omega})}}\\int_{0}^{T}e^{-st}f(t)dt"
Now , we will split this integeral in the domain which is given above ,
"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}[\\int_{0}^{\\dfrac {{\\pi}}{\\omega}}e^{-sT}sin({\\omega}t)dt" +"\\int_{\\dfrac{\\pi}{\\omega}}^{\\dfrac {2{\\pi}}{\\omega}}e^{-sT}0 \\ dt" ].....1)
"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}[\\int_{0}^{\\dfrac{\\pi}{\\omega}}e^{-sT}sin({\\omega}t)dt]"
We know integeration of "\\int{e^{at}sin(bt)}" ="\\dfrac{e^{at}}{a^{2}+b^{2}}[asin(bt)-bcos(bt)]"
now applying the above result in , in the integeral "\\int_{0}^{\\dfrac{\\pi}{\\omega}}e^{-sT}sin(\\omega t)dt"
"=\\dfrac{e^{-st}}{s^{2}+({\\omega })^{2}}[-ssin{\\omega}t-{\\omega}cos{\\omega}t]_{0}^{\\dfrac{\\pi}{\\omega}}"
"=" now putting the limits , in above integeral , we conclude ,
"=\\dfrac{e^{-s\\dfrac{\\pi}{\\omega}}}{s^{2}+({\\omega })^{2}}[{-ssin{\\pi}-{\\omega}cos{\\pi}}]-\\dfrac{e^{0}}{s^{2}+({\\omega })^{2}}[{0-{\\omega}cos0}]"
="\\dfrac {\\omega}{s^{2}+{\\omega}^{2}}" ("1+e^{\\dfrac{-s{\\pi}}{\\omega}}" )........2
now putting these integeration result in equation....... 1 ) we get -
"\\dfrac{1}{1-e^{\\dfrac{-2s{\\pi}}{\\omega}}}" ["\\dfrac{\\omega}{s^{2}+{\\omega}^{2}}(1+e^{\\dfrac{s{\\pi}}{\\omega}})" ]
This is the laplace transfrom of half wave rectifier .
Laplace transform of full wave rectifier sin equation is -
f(t)= { "sin(\\omega t)" , 0 < t < "\\dfrac{\\pi}{\\omega}"
The period of function is "\\dfrac{\\pi}{\\omega}"
"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}\\int_{0}^{T}e^{-st}f(t)dt"
"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}\\int_{0}^{T}e^{-st}sin{\\omega}tdt"
"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}[\\int_{0}^{\\dfrac {{\\pi}}{\\omega}}e^{-sT}sin({\\omega}t)dt]"
= "\\dfrac{1}{1-e^{\\dfrac{-2s{\\pi}}{\\omega}}}[\\dfrac{\\omega}{s^{2}+{\\omega}^{2}}(1+e^{\\dfrac{s{\\pi}}{\\omega}})]"
Comments
Leave a comment