Answer to Question #197461 in Differential Equations for M Kamran

Question #197461

Find the Laplace Transform of half-wave and full-wave

rectified sine wave given in the following figures.

Take w = 2


1
Expert's answer
2021-05-24T18:57:44-0400

Laplace transform of half wave rectified sine wave is given by -


f(t)= { "sin(\\omega t)" , 0 < t < "\\dfrac{\\pi}{\\omega}"

{ 0 , "\\dfrac{\\pi}{\\omega}" < t < "\\dfrac{2{\\pi}}{\\omega}"


we know that the time period of half wave rectifier is given by "T=\\dfrac{2{\\pi}}{w}"



If we know the time period of given wave function , then laplace transfrom can be calculated by using formula which is given by


"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}\\int_{0}^{T}e^{-st}f(t)dt"




"L[{f(t)}]=\\dfrac{1}{1-e^{(-s\\dfrac {2{\\pi}}{\\omega})}}\\int_{0}^{T}e^{-st}f(t)dt"


Now , we will split this integeral in the domain which is given above ,


"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}[\\int_{0}^{\\dfrac {{\\pi}}{\\omega}}e^{-sT}sin({\\omega}t)dt" +"\\int_{\\dfrac{\\pi}{\\omega}}^{\\dfrac {2{\\pi}}{\\omega}}e^{-sT}0 \\ dt" ].....1)


"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}[\\int_{0}^{\\dfrac{\\pi}{\\omega}}e^{-sT}sin({\\omega}t)dt]"


We know integeration of "\\int{e^{at}sin(bt)}" ="\\dfrac{e^{at}}{a^{2}+b^{2}}[asin(bt)-bcos(bt)]"


now applying the above result in , in the integeral "\\int_{0}^{\\dfrac{\\pi}{\\omega}}e^{-sT}sin(\\omega t)dt"


"=\\dfrac{e^{-st}}{s^{2}+({\\omega })^{2}}[-ssin{\\omega}t-{\\omega}cos{\\omega}t]_{0}^{\\dfrac{\\pi}{\\omega}}"


"=" now putting the limits , in above integeral , we conclude ,


"=\\dfrac{e^{-s\\dfrac{\\pi}{\\omega}}}{s^{2}+({\\omega })^{2}}[{-ssin{\\pi}-{\\omega}cos{\\pi}}]-\\dfrac{e^{0}}{s^{2}+({\\omega })^{2}}[{0-{\\omega}cos0}]"


="\\dfrac {\\omega}{s^{2}+{\\omega}^{2}}" ("1+e^{\\dfrac{-s{\\pi}}{\\omega}}" )........2



now putting these integeration result in equation....... 1 ) we get -



"\\dfrac{1}{1-e^{\\dfrac{-2s{\\pi}}{\\omega}}}" ["\\dfrac{\\omega}{s^{2}+{\\omega}^{2}}(1+e^{\\dfrac{s{\\pi}}{\\omega}})" ]




This is the laplace transfrom of half wave rectifier .



Laplace transform of full wave rectifier sin equation is -


f(t)= { "sin(\\omega t)" , 0 < t < "\\dfrac{\\pi}{\\omega}"



The period of function is "\\dfrac{\\pi}{\\omega}"



"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}\\int_{0}^{T}e^{-st}f(t)dt"



"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}\\int_{0}^{T}e^{-st}sin{\\omega}tdt"



"L[{f(t)}]=\\dfrac{1}{1-e^{(-sT)}}[\\int_{0}^{\\dfrac {{\\pi}}{\\omega}}e^{-sT}sin({\\omega}t)dt]"




= "\\dfrac{1}{1-e^{\\dfrac{-2s{\\pi}}{\\omega}}}[\\dfrac{\\omega}{s^{2}+{\\omega}^{2}}(1+e^{\\dfrac{s{\\pi}}{\\omega}})]"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS