Answer to Question #197876 in Differential Equations for Didues

Question #197876

(D2 - 4 ) y = xex

1
Expert's answer
2021-05-26T22:56:32-0400

Ans:-

(D24)y=xex(D^2 - 4 ) y = xe^x

The Auxiliary equation will be  m24=0, m=2,2\ m^2-4=0, \ m=2,2\\

C.F.=(Ax+B)e2xC.F.=(Ax+B)e^{2x}

P.I.=1D24xexP.I.=\dfrac{1}{D^2-4}xe^{x}\\


=4ex(1+D24)1×x=4e^x (-1+\dfrac{D^2}{4})^{-1}\times x


==   4ex\ \ \ 4e^x

Hence the complete solution is

Y=(Ax+B)e2x+4exY=(Ax+B)e^{2x}+4e^x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment