Solution:-
(D2−D′2−3D+3D′)z=xy+7
(D−D′)(D+D′−3)z=xy+7
m1=1m2=−1c1=0c2=3
c.f=ec1xf1(y+m1x)+ecxf2(y+m2x)
c.f=e0xf1(y+x)+e3xf2(y−x)
c.f=f1(y+x)+e3xf2(y−x)
PI=(D−D′)(D+D′−3)xy+7
D′=−1D=1
PI=−6xy+7
answer = C.F + P.I
=f1(y+x)+e3xf2(y−x)−(6xy+7)
Comments
Leave a comment