Identify the following differential equations and hence solve them
i) y' = -(4/x2) - (y/x) + y2
ii) y = xy' + 1 - ln y'
"Question(1)\\\\solve\\space riccati's\\space equation\\\\\n\\frac{dy}{dx}=-\\frac{4}{x^2}+y^2 -\\frac{y}{x}\\\\\n\\\\\n\\\\\nlet y=-\\frac{\\frac{dv}{dx}}{v}, which\\space gives \\frac{dy}{dx}=-\\frac{\\frac{d^2v}{dx^2}}{v}+ \\frac{(\\frac{dv}{dx})^2}{v^2}:\\\\\n-\\frac{\\frac{d^2v}{dx^2}}{v}+ \\frac{(\\frac{dv}{dx})^2}{v^2}= \\frac{(\\frac{dv}{dx})^2}{v^2}+\\frac{\\frac{dv}{dx}}{vx}-\\frac{4}{x^2}\\\\\nsubtract\\space \\frac{(\\frac{dv}{dx})^2}{v^2} from\\space both \\space sides\\space and\\space multiply\\space by\\space v\\\\\n-\\frac{d^2v}{dx^2}=\\frac{\\frac{dv}{dx}}{x}-\\frac{4v}{x^2}\\\\\nadd \\space \\frac{d^2v}{dx^2}to \\space both \\space sides:\\\\\n\\frac{d^2v}{dx^2}+\\frac{\\frac{dv}{dx}}{x}-\\frac{4v}{x^2}=0\\\\\nmultiply \\space both\\space sides\\space by \\space x^2\\\\\nx^2\\frac{d^2v}{dx^2}+x \\frac{dv}{dx}-4v=0\\\\\nassume\\space a\\space solution \\space to\\space this \\space euler-cauchy \\space equation\\space will \\space be \\space proportional \\space to \\space x^\\lambda \\space for \\space some \\space constant \\space \\lambda.\n\\\\substitute \\space v= x^\\lambda \\space into \\space the \\space differential\\space equation \\\\\nx^2\\frac{d^2 x^\\lambda}{dx^2}+x \\frac{d x^\\lambda}{dx}-4 x^\\lambda=0\\\\\nsubstitute \\space \\frac{d^2 x^\\lambda}{dx^2}=\\lambda (\\lambda-1)x^{lambda-2}and\\space \\frac{d x^\\lambda}{dx}=\\lambda x^{\\lambda-1}\\\\\n\\lambda^2 x^\\lambda -4 x^\\lambda=0\\\\\nfactor \\space out x^\\lambda:\\\\\n(\\lambda^2 -4 )x^\\lambda=0\\\\\nassuming\\space x \\ne0, the \\space zeros \\space must \\space come \\space from\\space the \\space polynomial:\\\\\n(\\lambda^2 -4 )=0\\\\\n(\\lambda-2)(\\lambda+2)=0\\\\\n\\lambda=-2\\space or\\space\\lambda=2\n\\\\the \\space root\\space \\lambda =-2 \\space \\\\gives\\space v_1=\\frac{c_1}{x^2 }\\space as\\space a\\space solotion , where \\space c_1 \\space is \\space an\\space arbitrary\\space constant.\n\\\\\\\\the \\space root\\space \\lambda =2 \\space \\\\gives\\space v_2=\\frac{c_2}{x^2 }\\space as\\space a\\space solution, where \\space c_2 \\space is \\space an\\space arbitrary\\space constant.\\\\the \\space general\\space solution\\space is \\space the \\space sum\\space of\\space the \\space above\\space solutions\\space\\\\\nv= v_1 +v_2 =\\frac{c_1}{x}+c_2x^2\\\\\nsubstitute \\space back\\space for\\space y=-\\frac{\\frac{dv}{dx}}{v}\\\\\ny=\\frac{2c_1-2c_2x^4}{c_1x+c_2x^5}\\\\\nadjust \\space constant\\space and\\space simplify\\\\\ny=\\frac{2}{x}-\\frac{4x^3}{x^4+c_1}\\\\\n-----------------------------------------------\\\\Question(2)\\\\\nsolve\\space the\\space clairaut\\space equation\\space \\\\\ny=-log(\\frac{dy}{dx})+x\\frac{dy}{dx}+1\\\\\ndifferentiate\\space both\\space side\\space with\\space respect \\space to\\space x\\\\\n\\frac{dy}{dx}=x\\frac{d^2y}{dx^2}+\\frac{dy}{dx}-\\frac{\\frac{d^2y}{dx^2}}{\\frac{dy}{dx}}\\\\\ncolloect\\space in\\space terms\\space of\\space \\frac{d^2y}{dx^2}\\\\\n\\frac{dy}{dx}=\\frac{dy}{dx}+\\frac{d^2y}{dx}(x-\\frac{1}{\\frac{dy}{dx}})\\\\\nsubtact\\space \\frac{dy}{dx} \\space from \\space both\\space sides\\\\\n\\frac{d^2y}{dx}(x-\\frac{1}{\\frac{dy}{dx}})=0\\\\\nsolve\\space \\frac{d^2y}{dx}=0 \\space and \\space x-\\frac{1}{\\frac{dy}{dx}}=0 \\space separately\\\\\nfor \\space \\frac{d^2y}{dx}=0\\\\\nintegrate \\space both\\space sides\\space with\\space wrt \\space x\\\\\n\\frac{dy}{dx}=\\int 0\\space dx= c_1 , where \\space c_1 is\\space an\\space arbitrary\\space constant.\\\\\nsubsitute \\frac{dy}{dx}=c_1 into\\space y=-log\\frac{dy}{dx}+x\\frac{dy}{dx}+1\\\\\ny=-log(c_1)+c_1 x+1\\\\\nfor \\space x-\\frac{1}{\\frac{dy}{dx}}=0\\\\\nsolve \\space for\\space \\frac{dy}{dx}\\\\\n\\frac{dy}{dx}=\\frac{1}{x}\n\\\\\nsubstitute \\space into\\space y=-log\\frac{dy}{dx}+x\\frac{dy}{dx}+1\\\\\ny=-log(\\frac{1}{x})+2\\\\\n\ny=-log(\\frac{1}{x})+2 \\space or y=-log(c_1)+c_1x+1"
------------------------------------------------------
Comments
Leave a comment