do the functions y1 (t)= √ t and y 2 ( t ) =1\ t form a fundamental sets of solutions of the equation 2t 2 y" + 3t y' - y=0, on the interval 0 <t< ∞ ? justify your answer.
Let "y=t^\\alpha". Then
"y''=\\alpha(\\alpha-1) t^{\\alpha-2}"
Substitute
"(2\\alpha^2-2\\alpha+3\\alpha-1)t^\\alpha=0"
"(2\\alpha^2+\\alpha-1)t^\\alpha=0"
This is true for "0<t<\\infin," if
"2\\alpha^2+2\\alpha-\\alpha-1=0"
"2\\alpha(\\alpha +1)-(\\alpha +1)=0"
"2(\\alpha +1)(\\alpha-\\dfrac{1}{2})=0"
"\\alpha_1=\\dfrac{1}{2}, \\alpha_2=-1"
"y_1=t^{1\/2}=\\sqrt{t}"
"y_2=t^{-1}=\\dfrac{1}{t}"
Hence "y_1(t)=\\sqrt{t}" and "y_2(t)=\\dfrac{1}{t}" form a fundamental sets of solutions of the equation 2t 2 y" + 3t y' - y=0, on the interval 0 <t< ∞ .
Comments
Leave a comment