Answer to Question #199509 in Differential Equations for rajkumar

Question #199509

do the functions y1 (t)= t and y 2 ( t ) =1\ t form a fundamental sets of solutions of the equation 2t 2 y" + 3t y' - y=0, on the interval 0 <t< ∞ ? justify your answer.


1
Expert's answer
2021-05-28T10:21:18-0400

Let "y=t^\\alpha". Then


"y'=\\alpha t^{\\alpha-1}"

"y''=\\alpha(\\alpha-1) t^{\\alpha-2}"


Substitute


"2t^2\\alpha(\\alpha-1) t^{\\alpha-2}+3t\\alpha t^{\\alpha-1}-t^\\alpha=0"

"(2\\alpha^2-2\\alpha+3\\alpha-1)t^\\alpha=0"

"(2\\alpha^2+\\alpha-1)t^\\alpha=0"

This is true for "0<t<\\infin," if


"2\\alpha^2+\\alpha-1=0"

"2\\alpha^2+2\\alpha-\\alpha-1=0"

"2\\alpha(\\alpha +1)-(\\alpha +1)=0"

"2(\\alpha +1)(\\alpha-\\dfrac{1}{2})=0"

"\\alpha_1=\\dfrac{1}{2}, \\alpha_2=-1"

"y_1=t^{1\/2}=\\sqrt{t}"

"y_2=t^{-1}=\\dfrac{1}{t}"

Hence "y_1(t)=\\sqrt{t}" and "y_2(t)=\\dfrac{1}{t}" form a fundamental sets of solutions of the equation 2t y" + 3t y' - y=0, on the interval 0 <t< ∞ .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS