Question #199509

do the functions y1 (t)= t and y 2 ( t ) =1\ t form a fundamental sets of solutions of the equation 2t 2 y" + 3t y' - y=0, on the interval 0 <t< ∞ ? justify your answer.


1
Expert's answer
2021-05-28T10:21:18-0400

Let y=tαy=t^\alpha. Then


y=αtα1y'=\alpha t^{\alpha-1}

y=α(α1)tα2y''=\alpha(\alpha-1) t^{\alpha-2}


Substitute


2t2α(α1)tα2+3tαtα1tα=02t^2\alpha(\alpha-1) t^{\alpha-2}+3t\alpha t^{\alpha-1}-t^\alpha=0

(2α22α+3α1)tα=0(2\alpha^2-2\alpha+3\alpha-1)t^\alpha=0

(2α2+α1)tα=0(2\alpha^2+\alpha-1)t^\alpha=0

This is true for 0<t<,0<t<\infin, if


2α2+α1=02\alpha^2+\alpha-1=0

2α2+2αα1=02\alpha^2+2\alpha-\alpha-1=0

2α(α+1)(α+1)=02\alpha(\alpha +1)-(\alpha +1)=0

2(α+1)(α12)=02(\alpha +1)(\alpha-\dfrac{1}{2})=0

α1=12,α2=1\alpha_1=\dfrac{1}{2}, \alpha_2=-1

y1=t1/2=ty_1=t^{1/2}=\sqrt{t}

y2=t1=1ty_2=t^{-1}=\dfrac{1}{t}

Hence y1(t)=ty_1(t)=\sqrt{t} and y2(t)=1ty_2(t)=\dfrac{1}{t} form a fundamental sets of solutions of the equation 2t y" + 3t y' - y=0, on the interval 0 <t< ∞ .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS