Answer to Question #199529 in Differential Equations for Raj kumar

Question #199529

Let x=er cosθ, y=er sinθ and f be a continuously differentible function of x and y, whose partial derivatives are also continuously differentible. show that ∂2f/r2 + ∂2f/∂θ2 = (x2+y2)(∂2f/∂x2 + ∂2f/y2)


1
Expert's answer
2022-01-10T16:10:57-0500

"\\frac{\\partial f}{\\partial r}=\\frac{\\partial f}{\\partial x}\\frac{\\partial x}{\\partial r}+\\frac{\\partial f}{\\partial y}\\frac{\\partial y}{\\partial r}=\\frac{\\partial f}{\\partial x}e^r cos\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8"


"\\frac{\\partial^2 f}{\\partial r^2}=\\frac{\\partial }{\\partial r}(\\frac{\\partial f}{\\partial x}e^r cos\u03b8)+\\frac{\\partial }{\\partial r}(\\frac{\\partial f}{\\partial y}e^r sin\u03b8)=(\\frac{\\partial^2 f}{\\partial x^2}\\frac{\\partial x}{\\partial r}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial y}{\\partial r})e^r cos\u03b8+\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"


"+(\\frac{\\partial^2 f}{\\partial y^2}\\frac{\\partial y}{\\partial r}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial x}{\\partial r})e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8="


"=(\\frac{\\partial^2 f}{\\partial x^2}e^r cos\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8+\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"


"+(\\frac{\\partial^2 f}{\\partial y^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8"


"\\frac{\\partial f}{\\partial \\theta}=\\frac{\\partial f}{\\partial x}\\frac{\\partial x}{\\partial \\theta}+\\frac{\\partial f}{\\partial y}\\frac{\\partial y}{\\partial \\theta}=-\\frac{\\partial f}{\\partial x}e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r cos\u03b8"


"\\frac{\\partial^2 f}{\\partial \u03b8^2}=-\\frac{\\partial }{\\partial \u03b8}(\\frac{\\partial f}{\\partial x}e^r sin\u03b8)+\\frac{\\partial }{\\partial \u03b8}(\\frac{\\partial f}{\\partial y}e^r cos\u03b8)=-(\\frac{\\partial^2 f}{\\partial x^2}\\frac{\\partial x}{\\partial \u03b8}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial y}{\\partial \u03b8})e^r sin\u03b8-\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"


"+(\\frac{\\partial^2 f}{\\partial y^2}\\frac{\\partial y}{\\partial \u03b8}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial x}{\\partial \u03b8})e^r cos\u03b8-\\frac{\\partial f}{\\partial y}e^r sin\u03b8="


"=-(-\\frac{\\partial^2 f}{\\partial x^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8-\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"


"+(\\frac{\\partial^2 f}{\\partial y^2}e^r cos\u03b8-\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8-\\frac{\\partial f}{\\partial y}e^r sin\u03b8"


then:


"\\frac{\\partial^2 f}{\\partial r^2}+\\frac{\\partial^2 f}{\\partial \u03b8^2}=(\\frac{\\partial^2 f}{\\partial x^2}e^r cos\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8+\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"


"+(\\frac{\\partial^2 f}{\\partial y^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8-"


"-(-\\frac{\\partial^2 f}{\\partial x^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8-\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"


"+(\\frac{\\partial^2 f}{\\partial y^2}e^r cos\u03b8-\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8-\\frac{\\partial f}{\\partial y}e^r sin\u03b8="


"=f_{xx}x^2+f_{xy}xy+f_{yy}y^2+f_{xy}xy+f_{xx}y^2-f_{xy}xy+f_{yy}x^2-f_{xy}xy="


"=f_{xx}(x^2+y^2)+f_{yy}(x^2+y^2)=(x^2+y^2)(f_{xx}+f_{yy})"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS