Let x=er cosθ, y=er sinθ and f be a continuously differentible function of x and y, whose partial derivatives are also continuously differentible. show that ∂2f/∂r2 + ∂2f/∂θ2 = (x2+y2)(∂2f/∂x2 + ∂2f/∂y2)
"\\frac{\\partial f}{\\partial r}=\\frac{\\partial f}{\\partial x}\\frac{\\partial x}{\\partial r}+\\frac{\\partial f}{\\partial y}\\frac{\\partial y}{\\partial r}=\\frac{\\partial f}{\\partial x}e^r cos\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8"
"\\frac{\\partial^2 f}{\\partial r^2}=\\frac{\\partial }{\\partial r}(\\frac{\\partial f}{\\partial x}e^r cos\u03b8)+\\frac{\\partial }{\\partial r}(\\frac{\\partial f}{\\partial y}e^r sin\u03b8)=(\\frac{\\partial^2 f}{\\partial x^2}\\frac{\\partial x}{\\partial r}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial y}{\\partial r})e^r cos\u03b8+\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"
"+(\\frac{\\partial^2 f}{\\partial y^2}\\frac{\\partial y}{\\partial r}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial x}{\\partial r})e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8="
"=(\\frac{\\partial^2 f}{\\partial x^2}e^r cos\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8+\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"
"+(\\frac{\\partial^2 f}{\\partial y^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8"
"\\frac{\\partial f}{\\partial \\theta}=\\frac{\\partial f}{\\partial x}\\frac{\\partial x}{\\partial \\theta}+\\frac{\\partial f}{\\partial y}\\frac{\\partial y}{\\partial \\theta}=-\\frac{\\partial f}{\\partial x}e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r cos\u03b8"
"\\frac{\\partial^2 f}{\\partial \u03b8^2}=-\\frac{\\partial }{\\partial \u03b8}(\\frac{\\partial f}{\\partial x}e^r sin\u03b8)+\\frac{\\partial }{\\partial \u03b8}(\\frac{\\partial f}{\\partial y}e^r cos\u03b8)=-(\\frac{\\partial^2 f}{\\partial x^2}\\frac{\\partial x}{\\partial \u03b8}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial y}{\\partial \u03b8})e^r sin\u03b8-\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"
"+(\\frac{\\partial^2 f}{\\partial y^2}\\frac{\\partial y}{\\partial \u03b8}+\\frac{\\partial^2 f}{\\partial x\\partial y }\\frac{\\partial x}{\\partial \u03b8})e^r cos\u03b8-\\frac{\\partial f}{\\partial y}e^r sin\u03b8="
"=-(-\\frac{\\partial^2 f}{\\partial x^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8-\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"
"+(\\frac{\\partial^2 f}{\\partial y^2}e^r cos\u03b8-\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8-\\frac{\\partial f}{\\partial y}e^r sin\u03b8"
then:
"\\frac{\\partial^2 f}{\\partial r^2}+\\frac{\\partial^2 f}{\\partial \u03b8^2}=(\\frac{\\partial^2 f}{\\partial x^2}e^r cos\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8+\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"
"+(\\frac{\\partial^2 f}{\\partial y^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8+\\frac{\\partial f}{\\partial y}e^r sin\u03b8-"
"-(-\\frac{\\partial^2 f}{\\partial x^2}e^r sin\u03b8+\\frac{\\partial^2 f}{\\partial x\\partial y }e^r cos\u03b8)e^r sin\u03b8-\\frac{\\partial f}{\\partial x}e^r cos\u03b8+"
"+(\\frac{\\partial^2 f}{\\partial y^2}e^r cos\u03b8-\\frac{\\partial^2 f}{\\partial x\\partial y }e^r sin\u03b8)e^r cos\u03b8-\\frac{\\partial f}{\\partial y}e^r sin\u03b8="
"=f_{xx}x^2+f_{xy}xy+f_{yy}y^2+f_{xy}xy+f_{xx}y^2-f_{xy}xy+f_{yy}x^2-f_{xy}xy="
"=f_{xx}(x^2+y^2)+f_{yy}(x^2+y^2)=(x^2+y^2)(f_{xx}+f_{yy})"
Comments
Leave a comment