Question #199529

Let x=er cosθ, y=er sinθ and f be a continuously differentible function of x and y, whose partial derivatives are also continuously differentible. show that ∂2f/r2 + ∂2f/∂θ2 = (x2+y2)(∂2f/∂x2 + ∂2f/y2)


1
Expert's answer
2022-01-10T16:10:57-0500

fr=fxxr+fyyr=fxercosθ+fyersinθ\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r}=\frac{\partial f}{\partial x}e^r cosθ+\frac{\partial f}{\partial y}e^r sinθ


2fr2=r(fxercosθ)+r(fyersinθ)=(2fx2xr+2fxyyr)ercosθ+fxercosθ+\frac{\partial^2 f}{\partial r^2}=\frac{\partial }{\partial r}(\frac{\partial f}{\partial x}e^r cosθ)+\frac{\partial }{\partial r}(\frac{\partial f}{\partial y}e^r sinθ)=(\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial r}+\frac{\partial^2 f}{\partial x\partial y }\frac{\partial y}{\partial r})e^r cosθ+\frac{\partial f}{\partial x}e^r cosθ+


+(2fy2yr+2fxyxr)ersinθ+fyersinθ=+(\frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial r}+\frac{\partial^2 f}{\partial x\partial y }\frac{\partial x}{\partial r})e^r sinθ+\frac{\partial f}{\partial y}e^r sinθ=


=(2fx2ercosθ+2fxyersinθ)ercosθ+fxercosθ+=(\frac{\partial^2 f}{\partial x^2}e^r cosθ+\frac{\partial^2 f}{\partial x\partial y }e^r sinθ)e^r cosθ+\frac{\partial f}{\partial x}e^r cosθ+


+(2fy2ersinθ+2fxyercosθ)ersinθ+fyersinθ+(\frac{\partial^2 f}{\partial y^2}e^r sinθ+\frac{\partial^2 f}{\partial x\partial y }e^r cosθ)e^r sinθ+\frac{\partial f}{\partial y}e^r sinθ


fθ=fxxθ+fyyθ=fxersinθ+fyercosθ\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta}=-\frac{\partial f}{\partial x}e^r sinθ+\frac{\partial f}{\partial y}e^r cosθ


2fθ2=θ(fxersinθ)+θ(fyercosθ)=(2fx2xθ+2fxyyθ)ersinθfxercosθ+\frac{\partial^2 f}{\partial θ^2}=-\frac{\partial }{\partial θ}(\frac{\partial f}{\partial x}e^r sinθ)+\frac{\partial }{\partial θ}(\frac{\partial f}{\partial y}e^r cosθ)=-(\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial θ}+\frac{\partial^2 f}{\partial x\partial y }\frac{\partial y}{\partial θ})e^r sinθ-\frac{\partial f}{\partial x}e^r cosθ+


+(2fy2yθ+2fxyxθ)ercosθfyersinθ=+(\frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial θ}+\frac{\partial^2 f}{\partial x\partial y }\frac{\partial x}{\partial θ})e^r cosθ-\frac{\partial f}{\partial y}e^r sinθ=


=(2fx2ersinθ+2fxyercosθ)ersinθfxercosθ+=-(-\frac{\partial^2 f}{\partial x^2}e^r sinθ+\frac{\partial^2 f}{\partial x\partial y }e^r cosθ)e^r sinθ-\frac{\partial f}{\partial x}e^r cosθ+


+(2fy2ercosθ2fxyersinθ)ercosθfyersinθ+(\frac{\partial^2 f}{\partial y^2}e^r cosθ-\frac{\partial^2 f}{\partial x\partial y }e^r sinθ)e^r cosθ-\frac{\partial f}{\partial y}e^r sinθ


then:


2fr2+2fθ2=(2fx2ercosθ+2fxyersinθ)ercosθ+fxercosθ+\frac{\partial^2 f}{\partial r^2}+\frac{\partial^2 f}{\partial θ^2}=(\frac{\partial^2 f}{\partial x^2}e^r cosθ+\frac{\partial^2 f}{\partial x\partial y }e^r sinθ)e^r cosθ+\frac{\partial f}{\partial x}e^r cosθ+


+(2fy2ersinθ+2fxyercosθ)ersinθ+fyersinθ+(\frac{\partial^2 f}{\partial y^2}e^r sinθ+\frac{\partial^2 f}{\partial x\partial y }e^r cosθ)e^r sinθ+\frac{\partial f}{\partial y}e^r sinθ-


(2fx2ersinθ+2fxyercosθ)ersinθfxercosθ+-(-\frac{\partial^2 f}{\partial x^2}e^r sinθ+\frac{\partial^2 f}{\partial x\partial y }e^r cosθ)e^r sinθ-\frac{\partial f}{\partial x}e^r cosθ+


+(2fy2ercosθ2fxyersinθ)ercosθfyersinθ=+(\frac{\partial^2 f}{\partial y^2}e^r cosθ-\frac{\partial^2 f}{\partial x\partial y }e^r sinθ)e^r cosθ-\frac{\partial f}{\partial y}e^r sinθ=


=fxxx2+fxyxy+fyyy2+fxyxy+fxxy2fxyxy+fyyx2fxyxy==f_{xx}x^2+f_{xy}xy+f_{yy}y^2+f_{xy}xy+f_{xx}y^2-f_{xy}xy+f_{yy}x^2-f_{xy}xy=


=fxx(x2+y2)+fyy(x2+y2)=(x2+y2)(fxx+fyy)=f_{xx}(x^2+y^2)+f_{yy}(x^2+y^2)=(x^2+y^2)(f_{xx}+f_{yy})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS