Find the differential equations of the space curve in which the two families of surfaces
u = x2 - y2 = c1 and v = y2 - z2 = c2 intersect.
Ans:-
Given two families of surfaces
"u=x^2-y^2=c_1 \\ \\ \\ \\ and \\ \\ \\ v=y^2-z^2= c_2"
For all level surface
"du=0 \\to du=2xdx-2ydy=0 \\ \\to\\\\\n\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ xdx=ydy"
"\\ \\ \\ \\ dv=0 \\to dv=2ydy-2zdz=0 \\ \\ \\ \\to \\\\\n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ ydy=zdz"
Then,
"xdx=ydy=zdz\u2223\u00f7(xyz)"
"\\dfrac{xdx}{xyz}=\\dfrac{ydy}{xyz}=\\dfrac{zdz}{xyz}"
"\\dfrac{dx}{yz}=\\dfrac{dy}{xz}=\\dfrac{dz}{xy}" is auxiliary equation
Conclusion
"(yz)p+(xz)q=xy" is desired equation
Comments
Leave a comment