f(x,y,z)=xy(x2+y2)z=c
fx=−x2y(x2+y2)2z(3x2+y2)
fy=−xy2(x2+y2)2z(3y2+x2)
fz=xy(x2+y2)1
Let z(x,y) is a surface orthogonal to the given system. Then:
(fx,fy,fz)⋅(zx,zy,−1)=0 So, we have differential equation:
−x2y(x2+y2)2z(3x2+y2)zx−xy2(x2+y2)2z(3y2+x2)zy
−xy(x2+y2)1=0
Divide by −xy(x2+y2)z
x(x2+y2)3x2+y2zx+y(x2+y2)3y2+x2zy+z1=0 The auxiliary equations:
3x2+y2x(x2+y2)dx=3y2+x2y(x2+y2)dy=−zdz Adding first and second and equating to third:
4x2+4y2(x2+y2)(xdx+ydy)=−zdz
4(xdx+ydy)=−zdz giving
x2+y2+4z2=c1
Subtracting the second equation from the first one:
2(x2−y2)(x2+y2)(xdx−ydy)
2(x2−y2)(c1−4z2)(xdx−ydy)=−zdz
x2−y2=c2c1−4z2
c2=c1−4z2x2−y2
Using the given conditions x2−y2=a,z=0:
a2=c1c22 Then
a2=(x2+y2+4z2)x2+y2(x2−y2)2
x2+y2+4z2=(x2−y2)2a2(x2+y2)
z=4(x2−y2)2a2(x2+y2)−4x2+y2
Comments