Question #199550

Find the surface which is orthogonal to the one parameter system z = c xy( x2 + y2 )

which passes through the hyperbola , x2 - y2 = a2 , z =0.

1
Expert's answer
2021-06-03T15:37:48-0400

𝑓(𝑥,𝑦,𝑧)=zxy(x2+y2)=c𝑓(𝑥, 𝑦, 𝑧) =\dfrac{z}{xy(x^2+y^2)}=c

fx=z(3x2+y2)x2y(x2+y2)2f_x=-\dfrac{z(3x^2+y^2)}{x^2y(x^2+y^2)^2}


fy=z(3y2+x2)xy2(x2+y2)2f_y=-\dfrac{z(3y^2+x^2)}{xy^2(x^2+y^2)^2}

fz=1xy(x2+y2)f_z=\dfrac{1}{xy(x^2+y^2)}

Let z(x,y)z(x,y) is a surface orthogonal to the given system. Then:


(fx,fy,fz)(zx,zy,1)=0(f_x, f_y, f_z)\cdot(z_x, z_y, -1)=0

So, we have differential equation:


z(3x2+y2)x2y(x2+y2)2zxz(3y2+x2)xy2(x2+y2)2zy-\dfrac{z(3x^2+y^2)}{x^2y(x^2+y^2)^2}z_x-\dfrac{z(3y^2+x^2)}{xy^2(x^2+y^2)^2}z_y

1xy(x2+y2)=0-\dfrac{1}{xy(x^2+y^2)}=0

Divide by zxy(x2+y2)-\dfrac{z}{xy(x^2+y^2)}


3x2+y2x(x2+y2)zx+3y2+x2y(x2+y2)zy+1z=0\dfrac{3x^2+y^2}{x(x^2+y^2)}z_x+\dfrac{3y^2+x^2}{y(x^2+y^2)}z_y+\dfrac{1}{z}=0

The auxiliary equations:


x(x2+y2)3x2+y2dx=y(x2+y2)3y2+x2dy=zdz\dfrac{x(x^2+y^2)}{3x^2+y^2}dx=\dfrac{y(x^2+y^2)}{3y^2+x^2}dy=-zdz

Adding first and second and equating to third:


(x2+y2)(xdx+ydy)4x2+4y2=zdz\dfrac{(x^2+y^2)(xdx+ydy)}{4x^2+4y^2}=-zdz

(xdx+ydy)4=zdz\dfrac{(xdx+ydy)}{4}=-zdz

giving 


x2+y2+4z2=c1x^2+y^2+4z^2=c_1

Subtracting the second equation from the first one:


(x2+y2)(xdxydy)2(x2y2)\dfrac{(x^2+y^2)(xdx-ydy)}{2(x^2-y^2)}

(c14z2)(xdxydy)2(x2y2)=zdz\dfrac{(c_1-4z^2)(xdx-ydy)}{2(x^2-y^2)}=-zdz


x2y2=c2c14z2x^2-y^2=c_2\sqrt{c_1-4z^2}

c2=x2y2c14z2c_2=\dfrac{x^2-y^2}{\sqrt{c_1-4z^2}}

Using the given conditions x2y2=a,z=0:x^2-y^2=a, z=0:


a2=c1c22a^2=c_1c_2^2

Then


a2=(x2+y2+4z2)(x2y2)2x2+y2a^2=(x^2+y^2+4z^2)\dfrac{(x^2-y^2)^2}{x^2+y^2}

x2+y2+4z2=a2(x2+y2)(x2y2)2x^2+y^2+4z^2=\dfrac{a^2(x^2+y^2)}{(x^2-y^2)^2}

z=a2(x2+y2)4(x2y2)2x2+y24z=\sqrt{\dfrac{a^2(x^2+y^2)}{4(x^2-y^2)^2}-\dfrac{x^2+y^2}{4}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS