Answer to Question #199550 in Differential Equations for Rajkumar

Question #199550

Find the surface which is orthogonal to the one parameter system z = c xy( x2 + y2 )

which passes through the hyperbola , x2 - y2 = a2 , z =0.

1
Expert's answer
2021-06-03T15:37:48-0400

"\ud835\udc53(\ud835\udc65, \ud835\udc66, \ud835\udc67) =\\dfrac{z}{xy(x^2+y^2)}=c"

"f_x=-\\dfrac{z(3x^2+y^2)}{x^2y(x^2+y^2)^2}"


"f_y=-\\dfrac{z(3y^2+x^2)}{xy^2(x^2+y^2)^2}"

"f_z=\\dfrac{1}{xy(x^2+y^2)}"

Let "z(x,y)" is a surface orthogonal to the given system. Then:


"(f_x, f_y, f_z)\\cdot(z_x, z_y, -1)=0"

So, we have differential equation:


"-\\dfrac{z(3x^2+y^2)}{x^2y(x^2+y^2)^2}z_x-\\dfrac{z(3y^2+x^2)}{xy^2(x^2+y^2)^2}z_y"

"-\\dfrac{1}{xy(x^2+y^2)}=0"

Divide by "-\\dfrac{z}{xy(x^2+y^2)}"


"\\dfrac{3x^2+y^2}{x(x^2+y^2)}z_x+\\dfrac{3y^2+x^2}{y(x^2+y^2)}z_y+\\dfrac{1}{z}=0"

The auxiliary equations:


"\\dfrac{x(x^2+y^2)}{3x^2+y^2}dx=\\dfrac{y(x^2+y^2)}{3y^2+x^2}dy=-zdz"

Adding first and second and equating to third:


"\\dfrac{(x^2+y^2)(xdx+ydy)}{4x^2+4y^2}=-zdz"

"\\dfrac{(xdx+ydy)}{4}=-zdz"

giving 


"x^2+y^2+4z^2=c_1"

Subtracting the second equation from the first one:


"\\dfrac{(x^2+y^2)(xdx-ydy)}{2(x^2-y^2)}"

"\\dfrac{(c_1-4z^2)(xdx-ydy)}{2(x^2-y^2)}=-zdz"


"x^2-y^2=c_2\\sqrt{c_1-4z^2}"

"c_2=\\dfrac{x^2-y^2}{\\sqrt{c_1-4z^2}}"

Using the given conditions "x^2-y^2=a, z=0:"


"a^2=c_1c_2^2"

Then


"a^2=(x^2+y^2+4z^2)\\dfrac{(x^2-y^2)^2}{x^2+y^2}"

"x^2+y^2+4z^2=\\dfrac{a^2(x^2+y^2)}{(x^2-y^2)^2}"

"z=\\sqrt{\\dfrac{a^2(x^2+y^2)}{4(x^2-y^2)^2}-\\dfrac{x^2+y^2}{4}}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS