Find the general integral of the equation
(x - y) p + (y - x - z) q = z
and the particular solution through the circle z = 1, x2 + y2 =1
general pde is given by Pp+Qq=R, we get
P=x-y
Q=y-x-z
R=z
By using lagrange method,
"\\frac{dx}{x-y}=\\frac{dy}{y-x-z}=\\frac{dz}{z}.........1"
"\\frac{dx+dy+dz}{x-y+y-x-z+z}=\\frac{d(x+y+z)}{0}\\newline\nx+y+z=c_1 .................2"
From 2, we get
"x+z=c_1-y\\\\\nThen,\\newline\n\\frac{dz}{z}=\\frac{dy}{y-x-z}\\\\\n\n\\frac{dz}{z}=\\frac{dy}{y-(c_1-y)}\\\\\n\\frac{dz}{z}=\\frac{dy}{2y-c_1}\\\\\n\\int \\frac{dz}{z}=\\int\\frac{dy}{2y-c_1}\\\\\n\\ln|z|+\\frac{1}{2}\\ln|c_2|=\\frac{1}{2}\\ln|2y-c_1|\\\\\nc_2z^2=2y-c_1\\\\\nc_2z^2=2y-x-y-z\\\\\n\\frac{y-x-z}{z^2}=c_2...............3"
Therefore, the general solution is
"F(x+y+z,\\frac{y-x-z}{z^2})=0"
Now, we find the particula solution,
From the given condition,
z=1and x2+y2=1.
Then,
equation 2 will be,
"x+y+1=c_1" ...........4
and, equation 3 will be,
"\\frac{y-x-1}{1^2}=c_2\\newline\ny-x-1=c_2" ..........5
Solving equation 4 and 5, we get
"x=\\frac{c_1-c_2-2}{2} and y=\\frac{c_1+c_2}{2}.............6\\\\\n\\text{put the value of x and y in} x^2+y^2=1.\\\\\n(\\frac{c_1-c_2-2}{2})^2+(\\frac{c_1+c_2}{2})^2=1\\\\\n(c_1-c_2-2)^2+(c_1+c_2)^2=4\\\\\n(c_1-c_2)^2+4-4(c_1-c_2)+(c_1+c_2)^2=4\\\\\n2c_1^2+2c_2^2-4c_1+4c_2=0\\\\\nc_1^2+c_2^2-2c_1+2c_2=0\\\\\n\\text{Again, put the value of} c_1 \\text{and} c_2 \\text{from equaton 2, 3.}\\\\\n(x+y+z)^2+(\\frac{x-y+z}{z^2})^2-2(x+y+z)+2(\\frac{x-y+z}{z^2})=0\\\\\n\\newline\n(x+y+z)(x+y+z-2)+(\\frac{x-y+z}{z^2})[\\frac{x-y+z}{z^2}+2] =0"
Comments
Leave a comment