Question #199547

Find the general integral of the equation

(x - y) p + (y - x - z) q = z

and the particular solution through the circle z = 1, x2 + y2 =1

1
Expert's answer
2021-06-06T15:48:11-0400

general pde is given by Pp+Qq=R, we get

P=x-y

Q=y-x-z

R=z

By using lagrange method,

dxxy=dyyxz=dzz.........1\frac{dx}{x-y}=\frac{dy}{y-x-z}=\frac{dz}{z}.........1 


dx+dy+dzxy+yxz+z=d(x+y+z)0x+y+z=c1.................2\frac{dx+dy+dz}{x-y+y-x-z+z}=\frac{d(x+y+z)}{0}\newline x+y+z=c_1 .................2


From 2, we get

x+z=c1yThen,dzz=dyyxzdzz=dyy(c1y)dzz=dy2yc1dzz=dy2yc1lnz+12lnc2=12ln2yc1c2z2=2yc1c2z2=2yxyzyxzz2=c2...............3x+z=c_1-y\\ Then,\newline \frac{dz}{z}=\frac{dy}{y-x-z}\\ \frac{dz}{z}=\frac{dy}{y-(c_1-y)}\\ \frac{dz}{z}=\frac{dy}{2y-c_1}\\ \int \frac{dz}{z}=\int\frac{dy}{2y-c_1}\\ \ln|z|+\frac{1}{2}\ln|c_2|=\frac{1}{2}\ln|2y-c_1|\\ c_2z^2=2y-c_1\\ c_2z^2=2y-x-y-z\\ \frac{y-x-z}{z^2}=c_2...............3


Therefore, the general solution is

F(x+y+z,yxzz2)=0F(x+y+z,\frac{y-x-z}{z^2})=0

Now, we find the particula solution,

From the given condition,

z=1and x2+y2=1.

Then,

equation 2 will be,

x+y+1=c1x+y+1=c_1 ...........4

and, equation 3 will be,

yx112=c2yx1=c2\frac{y-x-1}{1^2}=c_2\newline y-x-1=c_2 ..........5

Solving equation 4 and 5, we get


x=c1c222andy=c1+c22.............6put the value of x and y inx2+y2=1.(c1c222)2+(c1+c22)2=1(c1c22)2+(c1+c2)2=4(c1c2)2+44(c1c2)+(c1+c2)2=42c12+2c224c1+4c2=0c12+c222c1+2c2=0Again, put the value ofc1andc2from equaton 2, 3.(x+y+z)2+(xy+zz2)22(x+y+z)+2(xy+zz2)=0(x+y+z)(x+y+z2)+(xy+zz2)[xy+zz2+2]=0x=\frac{c_1-c_2-2}{2} and y=\frac{c_1+c_2}{2}.............6\\ \text{put the value of x and y in} x^2+y^2=1.\\ (\frac{c_1-c_2-2}{2})^2+(\frac{c_1+c_2}{2})^2=1\\ (c_1-c_2-2)^2+(c_1+c_2)^2=4\\ (c_1-c_2)^2+4-4(c_1-c_2)+(c_1+c_2)^2=4\\ 2c_1^2+2c_2^2-4c_1+4c_2=0\\ c_1^2+c_2^2-2c_1+2c_2=0\\ \text{Again, put the value of} c_1 \text{and} c_2 \text{from equaton 2, 3.}\\ (x+y+z)^2+(\frac{x-y+z}{z^2})^2-2(x+y+z)+2(\frac{x-y+z}{z^2})=0\\ \newline (x+y+z)(x+y+z-2)+(\frac{x-y+z}{z^2})[\frac{x-y+z}{z^2}+2] =0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS