general pde is given by Pp+Qq=R, we get
P=x-y
Q=y-x-z
R=z
By using lagrange method,
x−ydx=y−x−zdy=zdz.........1
x−y+y−x−z+zdx+dy+dz=0d(x+y+z)x+y+z=c1.................2
From 2, we get
x+z=c1−yThen,zdz=y−x−zdyzdz=y−(c1−y)dyzdz=2y−c1dy∫zdz=∫2y−c1dyln∣z∣+21ln∣c2∣=21ln∣2y−c1∣c2z2=2y−c1c2z2=2y−x−y−zz2y−x−z=c2...............3
Therefore, the general solution is
F(x+y+z,z2y−x−z)=0
Now, we find the particula solution,
From the given condition,
z=1and x2+y2=1.
Then,
equation 2 will be,
x+y+1=c1 ...........4
and, equation 3 will be,
12y−x−1=c2y−x−1=c2 ..........5
Solving equation 4 and 5, we get
x=2c1−c2−2andy=2c1+c2.............6put the value of x and y inx2+y2=1.(2c1−c2−2)2+(2c1+c2)2=1(c1−c2−2)2+(c1+c2)2=4(c1−c2)2+4−4(c1−c2)+(c1+c2)2=42c12+2c22−4c1+4c2=0c12+c22−2c1+2c2=0Again, put the value ofc1andc2from equaton 2, 3.(x+y+z)2+(z2x−y+z)2−2(x+y+z)+2(z2x−y+z)=0(x+y+z)(x+y+z−2)+(z2x−y+z)[z2x−y+z+2]=0
Comments