Answer to Question #199553 in Differential Equations for Raj kumar

Question #199553

Solve the differential equation

xcos(y/x) (ydx+xdy) = ysin(y/x) (xdy-ydx)


1
Expert's answer
2021-06-06T16:37:38-0400
xcos(yx)(ydx+xdy)=ysin(yx)(xdyydx)x\cos(\dfrac{y}{x})(ydx+xdy)=y\sin(\dfrac{y}{x})(xdy-ydx)

ydx+xdyxy=tan(yx)xdyydxx2\dfrac{ydx+xdy}{xy}=\tan(\dfrac{y}{x})\dfrac{xdy-ydx}{x^2}


d(xy)xy=tan(yx)d(yx)\dfrac{d(xy)}{xy}=\tan(\dfrac{y}{x})d(\dfrac{y}{x})

d(xy)xy=tan(yx)d(yx)\int\dfrac{d(xy)}{xy}=\int\tan(\dfrac{y}{x})d(\dfrac{y}{x})

tanudu=sinucosudu\int \tan u du=\int\dfrac{\sin u}{\cos u}du

=lncosu+C1=lnsecu+c1=-\ln|\cos u|+C_1=\ln|\sec u|+c_1

lnxy=lnsec(yx)lnc\ln|xy|=\ln|\sec (\dfrac{y}{x})|-\ln c


sec(yx)=cxy\sec (\dfrac{y}{x})=cxy




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment