Question #199564

sin-1(dy / dx) = x + y

1
Expert's answer
2021-06-11T02:43:12-0400
sin1(dydx)=x+ysin(x+y)=dydxLet x+y=u.ddx(x+y)=ddx(u),i.e.,1+dydx=dudx.Subst.ing in the diff. eqn.,sinu=dudx1,or,dudx=1+sinu.du1+sinu=dx.. [Separable Variable].du1+sinu=dx+c1sinu1sin2udu=x+cor,1sinucos2udu=x+c.{1cos2usinucos2u}du=x+c.tanusecu=x+c Letting u=x+y, we get the general solution as under: tan(x+y)sec(x+y)=x+c\sin ^{-1}\left(\frac{d y}{d x}\right)=x+y\\ \therefore \sin (x+y)=\frac{d y}{d x}\\ \text{Let } x+y=u .\\ \therefore \frac{d}{d x}(x+y)=\frac{d}{d x}(u),\\ i . e ., 1+\frac{d y}{d x}=\frac{d u}{d x}.\\ \text{Subst.ing in the diff. eqn.,}\\ \sin u=\frac{d u}{d x}-1, or,\frac{d u}{d x}=1+\sin u .\\ \therefore \frac{d u}{1+\sin u}=d x \ldots \ldots \ldots \ldots . . \text{ [Separable Variable]}.\\ \therefore \int \frac{d u}{1+\sin u}=\int d x+c\\ \therefore \int \frac{1-\sin u}{1-\sin ^{2} u} d u=x+c\\ or, \int \frac{1-\sin u}{\cos ^{2} u} d u=x+c.\\ \therefore \int\left\{\frac{1}{\cos ^{2} u}-\frac{\sin u}{\cos ^{2} u}\right\} d u=x+c .\\ \therefore \tan u-\sec u=x+c\\ \text{ Letting } u=x+y, \text{ we get the general solution as under: }\\ \tan (x+y)-\sec (x+y)=x+c\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS