Answer to Question #199564 in Differential Equations for rajkumar

Question #199564

sin-1(dy / dx) = x + y

1
Expert's answer
2021-06-11T02:43:12-0400
"\\sin ^{-1}\\left(\\frac{d y}{d x}\\right)=x+y\\\\ \\therefore \\sin (x+y)=\\frac{d y}{d x}\\\\\n\\text{Let } x+y=u .\\\\ \\therefore \\frac{d}{d x}(x+y)=\\frac{d}{d x}(u),\\\\ i . e ., 1+\\frac{d y}{d x}=\\frac{d u}{d x}.\\\\\n\\text{Subst.ing in the diff. eqn.,}\\\\\n\\sin u=\\frac{d u}{d x}-1, or,\\frac{d u}{d x}=1+\\sin u .\\\\\n\\therefore \\frac{d u}{1+\\sin u}=d x \\ldots \\ldots \\ldots \\ldots . . \\text{ [Separable Variable]}.\\\\\n\\therefore \\int \\frac{d u}{1+\\sin u}=\\int d x+c\\\\\n\\therefore \\int \\frac{1-\\sin u}{1-\\sin ^{2} u} d u=x+c\\\\\nor, \\int \\frac{1-\\sin u}{\\cos ^{2} u} d u=x+c.\\\\\n\\therefore \\int\\left\\{\\frac{1}{\\cos ^{2} u}-\\frac{\\sin u}{\\cos ^{2} u}\\right\\} d u=x+c .\\\\\n\\therefore \\tan u-\\sec u=x+c\\\\\n\\text{ Letting } u=x+y, \\text{ we get the general solution as under: }\\\\\n\\tan (x+y)-\\sec (x+y)=x+c\\\\"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS