Question #170708

y'' + y' - 6y = 2x

1
Expert's answer
2021-03-12T12:18:52-0500

Solution.

y+y6y=2x.y''+y'-6y=2x.


This is a linear differential equation of the second-order with constant coefficients. The general solution of this equation is found as the sum of the general solution y~\tilde{y} ​ of the corresponding homogeneous equation and some particular integral solution yy_*​ of the inhomogeneous equation:y=y~+y.y=\tilde{y}+y_*.

Сompose and solve the characteristic equation:


λ2+λ6=0,λ1=3,λ2=2.\lambda^2+\lambda-6=0, \newline \lambda_1=-3, \lambda_2=2.

 Therefore, y~=C1eλ1x+C2eλ2x.\tilde{y}=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}. So,

y~=C1e3x+C2e2x.\tilde{y}=C_1e^{-3x}+C_2e^{2x}.

Since the right-hand side also contains a 2x2x , we find a particular integral solution yy_* ​ ​in the form: 

y=Ax+B.y_*=Ax+B.


Using the method of undetermined coefficients we find that A=13,B=118.A=-\frac{1}{3}, B=-\frac{1}{18}.

So, the particular integral solution of equation y+y6y=2xy''+y'-6y=2x is

y=13x118.y_*=-\frac{1}{3}x-\frac{1}{18}.


And the general solution of the same equation is


y=C1e3x+C2e2x13x118.y=C_1e^{-3x}+C_2e^{2x}-\frac{1}{3}x-\frac{1}{18}.

Answer. y=C1e3x+C2e2x13x118.y=C_1e^{-3x}+C_2e^{2x}-\frac{1}{3}x-\frac{1}{18}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS