Question #170525

A bacterial population is known to have a logistic growth pattern with initial population 1000 and an equilibrium population of 10,000. A count shows that at the end of 1 hr there are 2000 bacteria present. Determine the population as a function of time. Determine the time at which the population is increasing most rapidly and draw a sketch of the logistic curve.


1
Expert's answer
2021-03-12T12:03:37-0500

N(t)=L1+(LN01)ektN(1)=2000=100001+(1000010001)ek2000=100001+9ek1+9ek=59ek=4ek=49=0.4˙k=10.4˙=0.81093N(t)=100001+9e0.81093tN(t)=7298.37(1+9e0.81093t)2N(t)=10000(106.532e1.62186t(1+9e0.81093t)35.91847e0.81093t(1+9e0.81093t)2)The time at which the population is increasingmost rapidly is the value oftwhenN(t)=0,10000(106.532e1.62186t(1+9e0.81093t)35.91847e0.81093t(1+9e0.81093t)2)=01065320e1.62186t591847e0.81093t(1+9e0.81093t)=0Letp=e0.81093t1065320p259184.7p(1+9p)=01065320p259184.7p532662.3p2=0532657.7p259184.7p=0p=0,0.11111e0.81093t=0.11111,t=2.709522.7hoursThe time at which the population is increasingmost rapidly is2.7hours.\displaystyle N(t) = \frac{L}{1 + \left(\frac{L}{N_0} - 1\right)e^{-kt}}\\ N(1) = 2000 = \frac{10000}{1 + \left(\frac{10000}{1000} - 1\right)e^{-k}} \\ 2000 = \frac{10000}{1 + 9e^{-k}}\\ 1 + 9e^{-k} = 5 \\ 9e^{-k} = 4\\ e^{-k} = \frac{4}{9} = 0.\dot{4} \\ k = \frac{1}{0.\dot{4}} = 0.81093 \\ N(t) = \frac{10000}{1 + 9e^{-0.81093t}}\\ N'(t) = \frac{7298.37}{\left(1 + 9e^{-0.81093t}\right)^2}\\ N''(t) = 10000\left(\frac{106.532e^{-1.62186t}}{\left(1 + 9e^{-0.81093t}\right)^3}- \frac{5.91847e^{-0.81093t}}{\left(1 + 9e^{-0.81093t}\right)^2}\right) \\ \textsf{The time at which the population is increasing}\\ \textsf{most rapidly is the value of}\,\, t \textsf{when}\,\, N''(t) = 0, \\ 10000\left(\frac{106.532e^{-1.62186t}}{\left(1 + 9e^{-0.81093t}\right)^3}- \frac{5.91847e^{-0.81093t}}{\left(1 + 9e^{-0.81093t}\right)^2}\right) = 0\\ 1065320e^{-1.62186t} - 591847e^{-0.81093t}\left(1 + 9e^{-0.81093t}\right) = 0 \\ \textsf{Let}\,\,\, p = e^{-0.81093t} \\ 1065320p^2 - 59184.7p\left(1 + 9p\right) = 0 \\ 1065320p^2 - 59184.7p - 532662.3p^2 = 0 \\ 532657.7p^2 - 59184.7p = 0 \\ p = 0, 0.11111 \\ e^{-0.81093t} = 0.11111,\,\, t = 2.70952 \approx 2.7\,\, \textsf{hours}\\ \therefore \textsf{The time at which the population is increasing}\\ \textsf{most rapidly is}\,\,\, 2.7\,\, \textsf{hours}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS