Answer to Question #170525 in Differential Equations for Angellica Matro

Question #170525

A bacterial population is known to have a logistic growth pattern with initial population 1000 and an equilibrium population of 10,000. A count shows that at the end of 1 hr there are 2000 bacteria present. Determine the population as a function of time. Determine the time at which the population is increasing most rapidly and draw a sketch of the logistic curve.


1
Expert's answer
2021-03-12T12:03:37-0500

"\\displaystyle\nN(t) = \\frac{L}{1 + \\left(\\frac{L}{N_0} - 1\\right)e^{-kt}}\\\\\n\nN(1) = 2000 = \\frac{10000}{1 + \\left(\\frac{10000}{1000} - 1\\right)e^{-k}} \\\\\n\n2000 = \\frac{10000}{1 + 9e^{-k}}\\\\\n\n1 + 9e^{-k} = 5 \\\\\n\n9e^{-k} = 4\\\\\n\ne^{-k} = \\frac{4}{9} = 0.\\dot{4} \\\\\n\nk = \\frac{1}{0.\\dot{4}} = 0.81093 \\\\\n\nN(t) = \\frac{10000}{1 + 9e^{-0.81093t}}\\\\\n\nN'(t) = \\frac{7298.37}{\\left(1 + 9e^{-0.81093t}\\right)^2}\\\\\n\nN''(t) = 10000\\left(\\frac{106.532e^{-1.62186t}}{\\left(1 + 9e^{-0.81093t}\\right)^3}- \\frac{5.91847e^{-0.81093t}}{\\left(1 + 9e^{-0.81093t}\\right)^2}\\right) \\\\\n\n\\textsf{The time at which the population is increasing}\\\\\n\\textsf{most rapidly is the value of}\\,\\, t \\textsf{when}\\,\\, N''(t) = 0, \\\\\n\n10000\\left(\\frac{106.532e^{-1.62186t}}{\\left(1 + 9e^{-0.81093t}\\right)^3}- \\frac{5.91847e^{-0.81093t}}{\\left(1 + 9e^{-0.81093t}\\right)^2}\\right) = 0\\\\\n\n\n1065320e^{-1.62186t} - 591847e^{-0.81093t}\\left(1 + 9e^{-0.81093t}\\right) = 0 \\\\\n\n\\textsf{Let}\\,\\,\\, p = e^{-0.81093t} \\\\\n\n1065320p^2 - 59184.7p\\left(1 + 9p\\right) = 0 \\\\\n\n1065320p^2 - 59184.7p - 532662.3p^2 = 0 \\\\\n\n532657.7p^2 - 59184.7p = 0 \\\\\n\np = 0, 0.11111 \\\\\n\ne^{-0.81093t} = 0.11111,\\,\\, t = 2.70952 \\approx 2.7\\,\\, \\textsf{hours}\\\\\n\n\\therefore \\textsf{The time at which the population is increasing}\\\\\n\\textsf{most rapidly is}\\,\\,\\, 2.7\\,\\, \\textsf{hours}."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog