Find the complete integral of the p.d.e P2x+Q2x= Pz using Jacobi's method
Step 1: (Converting the given PDE into the form "f(x, y, z, u_x, u_y, u_z)" = 0.
Set "p = \u2212\\dfrac{ux}{uz} and \\text q = \u2212\\dfrac{u_y}{u_z}" in the given PDE to obtain
"\\dfrac{(u_x)^2}{(u_z)^2} x + \\dfrac{u_y^2}{ u_z^2} y = z =\u21d2 xu_x^2 + yu_y^2 \u2212 zu_z^2 = 0" .
Thus,
"f(x, y, z, u_x, u_y, u_z) = xu_x^2 + yu_y^2 \u2212 zu_z^2 = 0" .
Step 2: Solving above PDE by Jacobi’s method
Compute "f_{u_x} , f_{u_y} , f_{u_z} , f_x, f_y, f_z"
"f_{u_x} = 2xu_x, f_{u_y} = 2yu_y, f_{u_z} = \u22122zu_z, f_x = u_x^2 , f_y = u_y^2 , f_z = \u2212u_z^2" .
.
Step 2(b): Writing auxiliary equation and solving for "u_x, u_y and u_z" .
The auxiliary equations are given by
"\\dfrac{dx}{ f_{u_x}} = \\dfrac{dy}{ f_{u_y}} = \\dfrac{dz}{ f_{u_z}} = \\dfrac{du_x}{ \u2212f_x} = \\dfrac{du_y}{ \u2212f_y} = \\dfrac{du_z}{ \u2212f_z}"
⇒ "\\dfrac{dx}{ 2xu_x} = \\dfrac{dy}{ 2yu_y} = \\dfrac{dz}{ \u22122zu_z} = \\dfrac{du_x}{ \u2212u_x^2} = \\dfrac{du_y}{ \u2212u_y^2} = \\dfrac{du_z}{ u_z^2}"
Now, "\\dfrac{dx }{2xu_x} = \\dfrac{du_x}{ \u2212u_x^2} \u21d2 \\dfrac{u_xdx}{ 2xu_x^2} = \u2212\\dfrac{2xdu_x}{ 2xu_x^2}"
"\u21d2 u_xdx = \u22122xdu_x \\\\=\n\n\u21d2 \\dfrac{dx}{ x} = \u22122 \\dfrac{du_x} {u_x} \\\\\n\n\u21d2 log x = \u22122 log(ux) + log(a) \\\\\n\n\u21d2 log x + log(u_x^2 ) = log(a)\\\\ \n\n\u21d2 xu_x^2 = a \\\\\n\n\u21d2 u_x = (\\dfrac{a}{ x} )^\\frac{1}{2}"
. Similarly, we get
."yu_y^2 = b \u21d2 u_y = (\\dfrac{ b}{ y} )^\\frac{1}{2}"
and
"u_z = [ \\dfrac{(a + b) }{2} ]^\\frac{1}{2}"
Step 2(c): Solving the equation ."du = u_xdx + u_ydy + u_zdz"
"du = (\\dfrac{a }{x} )^\\frac{1}{2} dx + (\\dfrac{ b}{ y} )^\\frac{1}{2} dy + (\\dfrac{ a + b}{ z} )^\\frac{1}{2} dz\\\\\n\n\u21d2 u = 2(a_x)^ \\frac{1}{2} + 2(b_y)^ \\frac{1}{2} + 2((a + b)z)^ \\frac{1}{2} + c."
Comments
Leave a comment