Step 1: (Converting the given PDE into the form f(x,y,z,ux,uy,uz) = 0.
Set p=−uzuxandq=−uzuy in the given PDE to obtain
(uz)2(ux)2x+uz2uy2y=z=⇒xux2+yuy2−zuz2=0 .
Thus,
f(x,y,z,ux,uy,uz)=xux2+yuy2−zuz2=0 .
Step 2: Solving above PDE by Jacobi’s method
Compute fux,fuy,fuz,fx,fy,fz
fux=2xux,fuy=2yuy,fuz=−2zuz,fx=ux2,fy=uy2,fz=−uz2 .
.
Step 2(b): Writing auxiliary equation and solving for ux,uyanduz .
The auxiliary equations are given by
fuxdx=fuydy=fuzdz=−fxdux=−fyduy=−fzduz
⇒ 2xuxdx=2yuydy=−2zuzdz=−ux2dux=−uy2duy=uz2duz
Now, 2xuxdx=−ux2dux⇒2xux2uxdx=−2xux22xdux
⇒uxdx=−2xdux=⇒xdx=−2uxdux⇒logx=−2log(ux)+log(a)⇒logx+log(ux2)=log(a)⇒xux2=a⇒ux=(xa)21
. Similarly, we get
.yuy2=b⇒uy=(yb)21
and
uz=[2(a+b)]21
Step 2(c): Solving the equation .du=uxdx+uydy+uzdz
du=(xa)21dx+(yb)21dy+(za+b)21dz⇒u=2(ax)21+2(by)21+2((a+b)z)21+c.
Comments