Question #170532

Find the complete integral of the p.d.e P2x+Q2x= Pz using Jacobi's method


1
Expert's answer
2021-03-11T13:47:49-0500

Step 1: (Converting the given PDE into the form f(x,y,z,ux,uy,uz)f(x, y, z, u_x, u_y, u_z) = 0.


Set p=uxuzandq=uyuzp = −\dfrac{ux}{uz} and \text q = −\dfrac{u_y}{u_z} in the given PDE to obtain


(ux)2(uz)2x+uy2uz2y=z=xux2+yuy2zuz2=0\dfrac{(u_x)^2}{(u_z)^2} x + \dfrac{u_y^2}{ u_z^2} y = z =⇒ xu_x^2 + yu_y^2 − zu_z^2 = 0 .

Thus,


f(x,y,z,ux,uy,uz)=xux2+yuy2zuz2=0f(x, y, z, u_x, u_y, u_z) = xu_x^2 + yu_y^2 − zu_z^2 = 0 .


Step 2: Solving above PDE by Jacobi’s method


Compute fux,fuy,fuz,fx,fy,fzf_{u_x} , f_{u_y} , f_{u_z} , f_x, f_y, f_z


fux=2xux,fuy=2yuy,fuz=2zuz,fx=ux2,fy=uy2,fz=uz2f_{u_x} = 2xu_x, f_{u_y} = 2yu_y, f_{u_z} = −2zu_z, f_x = u_x^2 , f_y = u_y^2 , f_z = −u_z^2 .

.

Step 2(b): Writing auxiliary equation and solving for ux,uyanduzu_x, u_y and u_z .


The auxiliary equations are given by

dxfux=dyfuy=dzfuz=duxfx=duyfy=duzfz\dfrac{dx}{ f_{u_x}} = \dfrac{dy}{ f_{u_y}} = \dfrac{dz}{ f_{u_z}} = \dfrac{du_x}{ −f_x} = \dfrac{du_y}{ −f_y} = \dfrac{du_z}{ −f_z}


dx2xux=dy2yuy=dz2zuz=duxux2=duyuy2=duzuz2\dfrac{dx}{ 2xu_x} = \dfrac{dy}{ 2yu_y} = \dfrac{dz}{ −2zu_z} = \dfrac{du_x}{ −u_x^2} = \dfrac{du_y}{ −u_y^2} = \dfrac{du_z}{ u_z^2}



Now, dx2xux=duxux2uxdx2xux2=2xdux2xux2\dfrac{dx }{2xu_x} = \dfrac{du_x}{ −u_x^2} ⇒ \dfrac{u_xdx}{ 2xu_x^2} = −\dfrac{2xdu_x}{ 2xu_x^2}


uxdx=2xdux=dxx=2duxuxlogx=2log(ux)+log(a)logx+log(ux2)=log(a)xux2=aux=(ax)12⇒ u_xdx = −2xdu_x \\= ⇒ \dfrac{dx}{ x} = −2 \dfrac{du_x} {u_x} \\ ⇒ log x = −2 log(ux) + log(a) \\ ⇒ log x + log(u_x^2 ) = log(a)\\ ⇒ xu_x^2 = a \\ ⇒ u_x = (\dfrac{a}{ x} )^\frac{1}{2}


. Similarly, we get


.yuy2=buy=(by)12yu_y^2 = b ⇒ u_y = (\dfrac{ b}{ y} )^\frac{1}{2}

and


uz=[(a+b)2]12u_z = [ \dfrac{(a + b) }{2} ]^\frac{1}{2}


Step 2(c): Solving the equation .du=uxdx+uydy+uzdzdu = u_xdx + u_ydy + u_zdz


du=(ax)12dx+(by)12dy+(a+bz)12dzu=2(ax)12+2(by)12+2((a+b)z)12+c.du = (\dfrac{a }{x} )^\frac{1}{2} dx + (\dfrac{ b}{ y} )^\frac{1}{2} dy + (\dfrac{ a + b}{ z} )^\frac{1}{2} dz\\ ⇒ u = 2(a_x)^ \frac{1}{2} + 2(b_y)^ \frac{1}{2} + 2((a + b)z)^ \frac{1}{2} + c.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS