Question #170019

4xyz=pq+2px^2y+2qxy^2


1
Expert's answer
2021-03-12T06:02:09-0500

4xyz=pq+2px2y+2qxy2f(x,y,z,p,q)=pq+2px2y+2qxy24xyz=0...()fx=4pxy+2qy24yzfy=2px2+4qxy4xzfz=4xyfp=q+2x2yfq=p+2xy24xyz = pq + 2px^2y + 2qxy^2\\ f(x,y,z,p,q) = pq + 2px^2y + 2qxy^2 - 4xyz = 0 ... (*)\\ f_x = 4pxy+2qy^2 - 4yz \\ f_y = 2px^2 + 4 qxy - 4xz\\ f_z = -4xy \\ f_p = q+2x^2y\\ f_q =p+2xy^2


By charpit method,

dxq2x2y=dyp2xy2=dz2pq2px2y2qxy2=dp2qy24yz=dq2px24xz\dfrac{dx}{-q-2x^2y} = \dfrac{dy}{-p-2xy^2} = \dfrac{dz}{-2pq-2px^2y - 2qxy^2} = \dfrac{dp}{2qy^2-4yz} = \dfrac{dq}{2px^2-4xz}


xdyydxqypx=xdpydq2xy(qypx)xdpydq=0xp=yqp=yxq\dfrac{xdy-ydx}{qy-px} = \dfrac{xdp-ydq}{2xy(qy-px)} \\ xdp -ydq = 0\\ xp = yq \\ p = \frac{y}{x}q

Substituting into (*), we have

yq2+4x2y2q4x2yz=0q=2x2y±2xx2y2+zyq^2 +4x^2y^2q-4x^2yz = 0 \\ q = -2x^2y \pm 2x \sqrt{x^2y^2+z} \\

Taking positive sign only

q=2x2y+2xx2y2+zp=2xy2+2yx2y2+zq = -2x^2y + 2x \sqrt{x^2y^2 +z} \\ \therefore p = -2xy^2 + 2y \sqrt{x^2y^2+z}

Substituting the value of p and q into pdx+qdy = dz and also integrating gives

(2xy2+2yx2y2+z)dx+(2x2y+2xx2y2+z)dy=dz(-2xy^2 + 2y \sqrt{x^2y^2+z} )dx + ( -2x^2y+ 2x \sqrt{x^2y^2+z} )dy = dz

Integrating term by term, we have

z=x2y2+xyx2y2+z+zlny(x2y2+z+xy)+ax2y2+xyx2y2+z+zlnx(x2y2+z+xy)+bz = -x^2y^2 +xy\sqrt{x^2y^2 +z} + z ln|y(\sqrt{x^2y^2 +z}+xy)|+ a -x^2y^2 +xy\sqrt{x^2y^2 +z} + z ln|x(\sqrt{x^2y^2 +z}+xy)| + b

i.e

z=2x2y2+2xyx2y2+z+z[lnx(x2y2+z+xy)+lny(x2y2+z+xy)]+a+bz = -2x^2y^2 +2xy\sqrt{x^2y^2+ z} + z [ln|x(\sqrt{x^2y^2+ z} + xy)| + ln|y(\sqrt{x^2y^2+ z} + xy)|] + a + b where a and b are constants


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS