4xyz=pq+2px^2y+2qxy^2
"4xyz = pq + 2px^2y + 2qxy^2\\\\\nf(x,y,z,p,q) = pq + 2px^2y + 2qxy^2 - 4xyz = 0 ... (*)\\\\ f_x = 4pxy+2qy^2 - 4yz \\\\ f_y = 2px^2 + 4 qxy - 4xz\\\\ f_z = -4xy \\\\ f_p = q+2x^2y\\\\ f_q =p+2xy^2"
By charpit method,
"\\dfrac{dx}{-q-2x^2y} = \\dfrac{dy}{-p-2xy^2} = \\dfrac{dz}{-2pq-2px^2y - 2qxy^2} = \\dfrac{dp}{2qy^2-4yz} = \\dfrac{dq}{2px^2-4xz}"
"\\dfrac{xdy-ydx}{qy-px} = \\dfrac{xdp-ydq}{2xy(qy-px)} \\\\ xdp -ydq = 0\\\\ xp = yq \\\\ p = \\frac{y}{x}q"
Substituting into (*), we have
"yq^2 +4x^2y^2q-4x^2yz = 0 \\\\\nq = -2x^2y \\pm 2x \\sqrt{x^2y^2+z} \\\\"
Taking positive sign only
"q = -2x^2y + 2x \\sqrt{x^2y^2 +z} \\\\ \\therefore p = -2xy^2 + 2y \\sqrt{x^2y^2+z}"
Substituting the value of p and q into pdx+qdy = dz and also integrating gives
"(-2xy^2 + 2y \\sqrt{x^2y^2+z} )dx + ( -2x^2y+ 2x \\sqrt{x^2y^2+z} )dy = dz"
Integrating term by term, we have
"z = -x^2y^2 +xy\\sqrt{x^2y^2 +z} + z ln|y(\\sqrt{x^2y^2 +z}+xy)|+ a -x^2y^2 +xy\\sqrt{x^2y^2 +z} + z ln|x(\\sqrt{x^2y^2 +z}+xy)| + b"
i.e
"z = -2x^2y^2 +2xy\\sqrt{x^2y^2+ z} + z [ln|x(\\sqrt{x^2y^2+ z} + xy)| + ln|y(\\sqrt{x^2y^2+ z} + xy)|] + a + b" where a and b are constants
Comments
Leave a comment