4xyz=pq+2px2y+2qxy2f(x,y,z,p,q)=pq+2px2y+2qxy2−4xyz=0...(∗)fx=4pxy+2qy2−4yzfy=2px2+4qxy−4xzfz=−4xyfp=q+2x2yfq=p+2xy2
By charpit method,
−q−2x2ydx=−p−2xy2dy=−2pq−2px2y−2qxy2dz=2qy2−4yzdp=2px2−4xzdq
qy−pxxdy−ydx=2xy(qy−px)xdp−ydqxdp−ydq=0xp=yqp=xyq
Substituting into (*), we have
yq2+4x2y2q−4x2yz=0q=−2x2y±2xx2y2+z
Taking positive sign only
q=−2x2y+2xx2y2+z∴p=−2xy2+2yx2y2+z
Substituting the value of p and q into pdx+qdy = dz and also integrating gives
(−2xy2+2yx2y2+z)dx+(−2x2y+2xx2y2+z)dy=dz
Integrating term by term, we have
z=−x2y2+xyx2y2+z+zln∣y(x2y2+z+xy)∣+a−x2y2+xyx2y2+z+zln∣x(x2y2+z+xy)∣+b
i.e
z=−2x2y2+2xyx2y2+z+z[ln∣x(x2y2+z+xy)∣+ln∣y(x2y2+z+xy)∣]+a+b where a and b are constants
Comments