Answer to Question #169579 in Differential Equations for Anand

Question #169579

Given that z = ax + √(a2 − 4y) + c is the complete integral of the PDE, p2-q2 = 4 ,determine its general integral.


1
Expert's answer
2021-03-09T17:15:47-0500

Given that "z=ax+\\sqrt{a^2-4y}+c" is the complete integral of the PDE, "p^2-q^2=4"

To find the general solution we put "c=f(a)," where "f" is an arbitrary function



"\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ z=ax+\\sqrt{a^2-4y}+f(a) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ (1)"

Differentiate "(1)" partially with respect to "a"



"x+{2a \\over 2\\sqrt{a^2-4y}}+f'(a)=0""{a \\over \\sqrt{a^2-4y}}=-(x+f'(a))""a^2=a^2(x+f'(a))^2-4y(x+f'(a))^2""a=\\pm2\\sqrt{{(x+f'(a))^2y \\over (x+f'(a))^2-1}}""z=ax-{a \\over x+f'(a)}+f(a)"

The general solution is



"z=\\pm2\\sqrt{{(x+f'(a))^2y \\over (x+f'(a))^2-1}}x\\mp\\text{sgn}(x+f'(a))2\\sqrt{{y \\over (x+f'(a))^2-1}}+f(a)"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog