z(x,y)=a(x+logy)−2x2−bxz=ax+alogy−2x2−bx for z(x,y):
dz=∂x∂zdx+∂y∂zdy then;
∂x∂z=a−6x3−b;∂y∂z=ya Let:
p=∂x∂zand q=∂y∂z then
q=ya⟹a=qy⋯(i)p=a−6x3−b⋯(ii) put (i) in (ii)
p=qy−6x3−b6p=6qy−x3−6b6p−6qy+x3+6b=06(p−qy)+x3+6b=06(p−qy+b)+x3=0 The required PDE is therefore:
6(p−qy+b)+x3=0
Comments