"z(x,y)=a(x+\\log y)-\\frac{x^2}{2}-bx\\\\\nz= ax +a\\log y-\\frac{x^2}{2}-bx" for z(x,y):
"dz = \\dfrac{\\partial z}{\\partial x}dx+\\dfrac{\\partial z}{\\partial y}dy\\\\" then;
"\\dfrac{\\partial z}{\\partial x} = a - \\frac{x^3}{6}-b\\; \\text{;} \\qquad \\dfrac{\\partial z}{\\partial y} = \\frac{a}{y}" Let:
"p = \\dfrac{\\partial z}{\\partial x} \\qquad \\text{and } \\qquad q=\\dfrac{\\partial z}{\\partial y}" then
"q = \\frac{a}{y} \\implies a =qy \\quad \\cdots (i)\\\\\np = a -\\frac{x^3}{6}-b \\qquad \\cdots(ii)" put (i) in (ii)
"p = qy -\\frac{x^3}{6}-b\\\\\n6p = 6qy - x^3 - 6b\\\\\n6p-6qy+x^3+6b=0\\\\\n6(p-qy)+x^3+6b=0\\\\\n6(p-qy+b)+x^3=0\\\\" The required PDE is therefore:
"6(p-qy+b)+x^3=0\\\\"
Comments
Leave a comment