Find the partial differential equation arising from φ(z/x3, y/z) = 0
where φ: R2→ R is an arbitrary function.
Also find the general solution of the PDE obtained.
Let "F(x,y,z)=f\\left(\\frac{z}{x^3},\\frac{y}{z}\\right)".
Then "F'_x=f'_{x_1}\\left(-3\\frac{z}{x^4}\\right)+f'_{x_2}\\cdot 0=-3f'_{x_1}\\frac{z}{x^4}", "F'_y=f'_{x_1}\\cdot 0+f'_{x_2}\\frac{1}{z}=f'_{x_2}\\frac{1}{z}",
"F'_z=f'_{x_1}\\frac{1}{x^3}-f'_{x_2}\\frac{y}{z^2}".
Since our function "z(x,y)" is given by the equation "F(x,y,z)=0", by the implicit function
theorem we obtain "z'_x=-\\frac{F'_x}{F'_z}=\\frac{3f'_{x_1}\\frac{z}{x^4}}{f'_{x_1}\\frac{1}{x^3}-f'_{x_2}\\frac{y}{z^2}}" and "z'_y=-\\frac{F'_y}{F'_z}=\\frac{-f'_{x_2}\\frac{1}{z}}{f'_{x_1}\\frac{1}{x^3}-f'_{x_2}\\frac{y}{z^2}}".
Rewrite it: "\\frac{x}{3z}z'_x=\\frac{f'_{x_1}\\frac{1}{x^3}}{f'_{x_1}\\frac{1}{x^3}-f'_{x_2}\\frac{y}{z^2}}" and "\\frac{y}{z}z'_y=\\frac{-f'_{x_2}\\frac{y}{z^2}}{f'_{x_1}\\frac{1}{x^3}-f'_{x_2}\\frac{y}{z^2}}", so "\\frac{x}{3z}z'_x+\\frac{y}{z}z'_y=1" or
"xz'_x+3yz'_y=3z".
For obtain a general solution of this equation, we write the following equation: "\\frac{dx}{x}=\\frac{dy}{3y}=\\frac{dz}{3z}".
1)Solve "\\frac{dx}{x}=\\frac{dz}{3z}" . We have "3zdx-xdz=0".
Multiplying it by "\\frac{x^2}{z^2}" , we obtain "\\frac{3x^2zdx-x^3dz}{z^2}=0" or "d\\left(\\frac{x^3}{z}\\right)=0".
So we obtain a first integral "\\frac{x^3}{z}=C_1".
2) Solve "\\frac{dy}{3y}=\\frac{dz}{3z}" .
We have "ydz-zdy=0".
Multiplying it by "\\frac{1}{z^2}", we obtain "\\frac{ydz-zdy}{z^2}=0" or "-d\\left(\\frac{y}{z}\\right)=0" .
So we obtain a second integral "\\frac{y}{z}=C_2".
Therefore the general solution of "xz'_x+3yz'_y=3z" is "g\\left(\\frac{x^3}{z},\\frac{y}{z}\\right)=0"
Comments
Leave a comment