Answer to Question #169576 in Differential Equations for Anand

Question #169576

Find the partial differential equation arising from φ(z/x3, y/z) = 0

 where φ: R2→ R is an arbitrary function.


Also find the general solution of the PDE obtained.


1
Expert's answer
2021-03-09T02:28:10-0500

Let F(x,y,z)=f(zx3,yz)F(x,y,z)=f\left(\frac{z}{x^3},\frac{y}{z}\right).


Then Fx=fx1(3zx4)+fx20=3fx1zx4F'_x=f'_{x_1}\left(-3\frac{z}{x^4}\right)+f'_{x_2}\cdot 0=-3f'_{x_1}\frac{z}{x^4}Fy=fx10+fx21z=fx21zF'_y=f'_{x_1}\cdot 0+f'_{x_2}\frac{1}{z}=f'_{x_2}\frac{1}{z}


Fz=fx11x3fx2yz2F'_z=f'_{x_1}\frac{1}{x^3}-f'_{x_2}\frac{y}{z^2}.


Since our function z(x,y)z(x,y) is given by the equation F(x,y,z)=0F(x,y,z)=0, by the implicit function


theorem we obtain zx=FxFz=3fx1zx4fx11x3fx2yz2z'_x=-\frac{F'_x}{F'_z}=\frac{3f'_{x_1}\frac{z}{x^4}}{f'_{x_1}\frac{1}{x^3}-f'_{x_2}\frac{y}{z^2}} and zy=FyFz=fx21zfx11x3fx2yz2z'_y=-\frac{F'_y}{F'_z}=\frac{-f'_{x_2}\frac{1}{z}}{f'_{x_1}\frac{1}{x^3}-f'_{x_2}\frac{y}{z^2}}.


Rewrite it: x3zzx=fx11x3fx11x3fx2yz2\frac{x}{3z}z'_x=\frac{f'_{x_1}\frac{1}{x^3}}{f'_{x_1}\frac{1}{x^3}-f'_{x_2}\frac{y}{z^2}} and yzzy=fx2yz2fx11x3fx2yz2\frac{y}{z}z'_y=\frac{-f'_{x_2}\frac{y}{z^2}}{f'_{x_1}\frac{1}{x^3}-f'_{x_2}\frac{y}{z^2}}, so x3zzx+yzzy=1\frac{x}{3z}z'_x+\frac{y}{z}z'_y=1 or 


xzx+3yzy=3zxz'_x+3yz'_y=3z.


For obtain a general solution of this equation, we write the following equation: dxx=dy3y=dz3z\frac{dx}{x}=\frac{dy}{3y}=\frac{dz}{3z}.


1)Solve dxx=dz3z\frac{dx}{x}=\frac{dz}{3z} . We have 3zdxxdz=03zdx-xdz=0.


Multiplying it by x2z2\frac{x^2}{z^2} , we obtain 3x2zdxx3dzz2=0\frac{3x^2zdx-x^3dz}{z^2}=0 or d(x3z)=0d\left(\frac{x^3}{z}\right)=0.


So we obtain a first integral x3z=C1\frac{x^3}{z}=C_1.


2) Solve dy3y=dz3z\frac{dy}{3y}=\frac{dz}{3z} .


We have ydzzdy=0ydz-zdy=0.


Multiplying it by 1z2\frac{1}{z^2}, we obtain ydzzdyz2=0\frac{ydz-zdy}{z^2}=0 or d(yz)=0-d\left(\frac{y}{z}\right)=0 .


So we obtain a second integral yz=C2\frac{y}{z}=C_2.


Therefore the general solution of xzx+3yzy=3zxz'_x+3yz'_y=3z is g(x3z,yz)=0g\left(\frac{x^3}{z},\frac{y}{z}\right)=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment