Question #169213

Solve the PDE ∂z/∂x + ∂z/∂y = z2

1
Expert's answer
2021-03-10T09:09:18-0500

zx+zy=z2The auxillairy equation are, dx=dy=dzz2Integrate the first two fractions. We have that; x=y+axy=aIntegrate the last two fractions y=1z+by+1z=b.Hence the solution is f(a,b)=f(xy,y+1z)=0.\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=z^2\\ \text{The auxillairy equation are, }\\ dx=dy=\frac{dz}{z^2}\\ \text{Integrate the first two fractions. We have that; }\\ x=y+a\\ x-y=a\\ \text{Integrate the last two fractions }\\ y=-\frac{1}{z}+b\\ y+\frac{1}{z}=b.\\ \text{Hence the solution is } f(a,b)=f(x-y,y+\frac{1}{z})=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
25.03.21, 16:39

Dear Anand, please use the panel for submitting new questions.

Anand
25.03.21, 04:26

The product of two divergent sequences is divergent. True or false? Justify.

LATEST TUTORIALS
APPROVED BY CLIENTS