Question #168543

A particle of mass m thrown vertically upward with velocity v0. The air resistance is mgcv² where c is a constant with v us the velocity at any time t. Show that the time taken by bthe particle to reach the highest point is given by v0 underroot c =tan(gt underroot c)


1
Expert's answer
2021-03-04T23:45:39-0500

Upward motion

Using Newton’s 2nd law gives:


my=mgcy2mgmy''=-mgcy'^2-mg

dvdt=gcv2g\dfrac{dv}{dt}=-gcv^2-g

dvcv2+1=gdt\int\dfrac{dv}{cv^2+1}=-\int g dt

1ctan1(cv)=gt+C1\dfrac{1}{\sqrt{c}}\tan^{-1}(\sqrt{c}v)=-gt+C_1

t=0:C1=1ctan1(cv0)t=0:C_1=\dfrac{1}{\sqrt{c}}\tan^{-1}(\sqrt{c}v_0)1ctan1(cv)=gt+1ctan1(cv0)\dfrac{1}{\sqrt{c}}\tan^{-1}(\sqrt{c}v)=-gt+\dfrac{1}{\sqrt{c}}\tan^{-1}(\sqrt{c}v_0)

When the particle reaches the highest point v=0v=0


0=gtvertex+1ctan1(cv0)0=-gt_{vertex}+\dfrac{1}{\sqrt{c}}\tan^{-1}(\sqrt{c}v_0)

tvertex=1gctan1(cv0)t_{vertex}=\dfrac{1}{g\sqrt{c}}\tan^{-1}(\sqrt{c}v_0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS