dy/dx-y=xy²
"\\displaystyle\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} - y = xy^2 \\\\\n\ny^{-2}\\frac{\\mathrm{d}y}{\\mathrm{d}x} - y^{-1} = x \\\\\n\n\\textsf{Let}\\,\\,\\, v = y^{-1}\\\\\n\n\\frac{\\mathrm{d}v}{\\mathrm{d}x} = -y^{-2}\\frac{\\mathrm{d}y}{\\mathrm{d}x} \\\\\n\n-\\frac{\\mathrm{d}v}{\\mathrm{d}x} - v = x \\\\\n\n\\frac{\\mathrm{d}v}{\\mathrm{d}x} + v = -x \\\\\n\n\\textsf{Integrating factor (IF)} = e^{\\int 1 \\mathrm{d} x} = e^x\\\\\n\nv e^{x} = -\\int x e^{x} \\,\\, \\mathrm{d}x \\\\\n\nv e^{x} = -xe^{x} + \\int e^{x}\\,\\, \\mathrm{d}x \\\\\n\nve^{x} = -xe^{x} + e^{x} + C \\\\\n\nv = 1 - x + Ce^{-x} \\\\\n\ny^{-1} = 1 - x + Ce^{-x} \\\\\n\n\\therefore y = \\frac{1}{1 - x + Ce^{-x}}"
Comments
Leave a comment