Question #167509

find the general solution of the equation x.dy/dx+4y=x⁵.e^x using the method of variation of parameters.


1
Expert's answer
2021-02-28T08:36:02-0500

xdydx+4y=x5exx\frac{{dy}}{{dx}} + 4y = {x^5}{e^x}

consider the corresponding homogeneous equation

xdydx+4y=0xdydx=4ydyy=4dxxlny=4lnx+lnC=lnCx4y=Cx4x\frac{{dy}}{{dx}} + 4y = 0 \Rightarrow x\frac{{dy}}{{dx}} = - 4y \Rightarrow \frac{{dy}}{y} = - 4\frac{{dx}}{x} \Rightarrow \ln y = - 4\ln x + \ln C = \ln \frac{C}{{{x^4}}} \Rightarrow y = \frac{C}{{{x^4}}}

Let

C=C(x)C = C(x)

Then

y=Cx4C4x3x8=Cx4Cx5y' = \frac{{C'{x^4} - C \cdot 4{x^3}}}{{{x^8}}} = \frac{{C'x - 4C}}{{{x^5}}}

substitute in the original equation:

xCx4Cx5+4Cx4=x5exCxx4=x5exC=x8ex\begin{array}{l} x\frac{{C'x - 4C}}{{{x^5}}} + 4 \cdot \frac{C}{{{x^4}}} = {x^5}{e^x}\\ \frac{{C'x}}{{{x^4}}} = {x^5}{e^x}\\ C' = {x^8}{e^x} \end{array}

then

C=x8exdx=x8ex8x7exdx=x8ex8x7ex+56x6exdx=C = \int {{x^8}{e^x}dx} = {x^8}{e^x} - \int {8{x^7}{e^x}dx = } {x^8}{e^x} - 8{x^7}{e^x} + \int {56{x^6}{e^x}} dx=

=x8ex8x7ex+56x6exdx336x5exdx=x8ex8x7ex+56x6ex336x5ex+={x^8}{e^x} - 8{x^7}{e^x} + \int {56{x^6}{e^x}} dx- \int {336{x^5}{e^x}} dx = {x^8}{e^x} - 8{x^7}{e^x} + 56{x^6} {e^x}- 336{x^5}{e^x} +

+1680x4exdx=x8ex8x7ex+56x6ex336x5ex+1680x4ex6720x3exdx=+ \int {1680{x^4}} {e^x}dx = {x^8}{e^x} - 8{x^7}{e^x} + 56{x^6}{e^x} - 336{x^5}{e^x} + 1680{x^4}{e^x} - \int {6720{x^3}} {e^x}dx =

=x8ex8x7ex+56x6ex336x5ex+1680x4ex6720x3ex+20160x2exdx== {x^8}{e^x} - 8{x^7}{e^x} + 56{x^6} {e^x}- 336{x^5}{e^x} + 1680{x^4}{e^x} - 6720{x^3}{e^x} + \int {20160{x^2}{e^x}dx} =

=x8ex8x7ex+56x6ex336x5ex+1680x4ex6720x3ex+20160x2ex40320xexdx=x8ex8x7ex+56x6ex336x5ex+1680x4ex6720x3ex+20160x2ex40320xex+x8ex8x7ex+56x6ex336x5ex+1680x4ex6720x3ex+20160x2ex40320xex+40320exdx=x8ex8x7ex+56x6ex336x5ex+1680x4ex6720x3ex+20160x2ex40320xex+40320ex+C1={x^8}{e^x} - 8{x^7}{e^x} + 56{x^6} {e^x}- 336{x^5}{e^x} + 1680{x^4}{e^x} - 6720{x^3}{e^x} + 20160{x^2}{e^x} - \int {40320x{e^x}} dx={x^8}{e^x} - 8{x^7}{e^x} + 56{x^6}{e^x} - 336{x^5}{e^x} + 1680{x^4}{e^x} - 6720{x^3}{e^x} + 20160{x^2}{e^x} - 40320x{e^x} + {x^8}{e^x} - 8{x^7}{e^x} + 56{x^6} {e^x}- 336{x^5}{e^x} + 1680{x^4}{e^x} - 6720{x^3}{e^x} + 20160{x^2}{e^x} - 40320x{e^x} + \int {40320{e^x}} dx = {x^8}{e^x} - 8{x^7}{e^x} + 56{x^6}{e^x} - 336{x^5}{e^x} + 1680{x^4}{e^x} - 6720{x^3}{e^x} + 20160{x^2}{e^x} - - 40320x{e^x} + 40320{e^x}+{C_1}

Then

y=Cx4==ex(x88x7e+56x6336x5+1680x46720x3+20160x240320x40320)+C1x4\begin{array}{l} y = \frac{C}{{{x^4}}} = \\ = \frac{{{e^x}\left( {{x^8} - 8{x^7}e + 56{x^6} - 336{x^5} + 1680{x^4} - 6720{x^3} + 20160{x^2} - 40320x - 40320} \right) + {C_1}}}{{{x^4}}} \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS