xdxdy+4y=x5ex
consider the corresponding homogeneous equation
xdxdy+4y=0⇒xdxdy=−4y⇒ydy=−4xdx⇒lny=−4lnx+lnC=lnx4C⇒y=x4C
Let
C=C(x)
Then
y′=x8C′x4−C⋅4x3=x5C′x−4C
substitute in the original equation:
xx5C′x−4C+4⋅x4C=x5exx4C′x=x5exC′=x8ex
then
C=∫x8exdx=x8ex−∫8x7exdx=x8ex−8x7ex+∫56x6exdx=
=x8ex−8x7ex+∫56x6exdx−∫336x5exdx=x8ex−8x7ex+56x6ex−336x5ex+
+∫1680x4exdx=x8ex−8x7ex+56x6ex−336x5ex+1680x4ex−∫6720x3exdx=
=x8ex−8x7ex+56x6ex−336x5ex+1680x4ex−6720x3ex+∫20160x2exdx=
=x8ex−8x7ex+56x6ex−336x5ex+1680x4ex−6720x3ex+20160x2ex−∫40320xexdx=x8ex−8x7ex+56x6ex−336x5ex+1680x4ex−6720x3ex+20160x2ex−40320xex+x8ex−8x7ex+56x6ex−336x5ex+1680x4ex−6720x3ex+20160x2ex−40320xex+∫40320exdx=x8ex−8x7ex+56x6ex−336x5ex+1680x4ex−6720x3ex+20160x2ex−−40320xex+40320ex+C1
Then
y=x4C==x4ex(x8−8x7e+56x6−336x5+1680x4−6720x3+20160x2−40320x−40320)+C1
Comments