The Langrage equation is:
(x2+y2)p+2xyq=(x+y)z From the general equaton:
Pp+Qq=R From the above equation,
P=x2+y2Q=2xyR=(x+y)z
From the auxilliary equation,
Pdx=Qdy=Rdz Hence:
x2+y2dx=2xydy=(x+y)zdz⋯⋯⋯eqn(i)
From the first two and last ratios and solve, we have:
(x2+y2)+2xydx+dy=(x+y)zdz
Recall:
x2+y2=(x+y)2−2xy⋯eqn(∗)∴(x+y)2−2xy+2xydx+dy=x+yzdz(x+y)2dx+dy=x+yzdzx+ydx+dy=zdzx+yd(x+y)=zdz
Integrating both sides:
∫x+yd(x+y)=∫zdzln(x+y)=lnz+lncln(x+y)=lnczx+y=cz⟹c1=zx+y⋯⋯eqn(ii)
Consider the last ratio in eqn (i):
(x+y)zdz From eqn (ii)
z=c1x+y Substituting the value of z in the last ratio:
(x+y)c1(x+y)dzc1(x+y)2dz⟹(x+y)2c1dz⋯eqn(iii)
By replacing the third ration in eqn (i) with eqn(iii)
x2+y2dx=2xydy=(x+y)2c1dz Thus:
x2+y2−2xy−(x+y)2dx−dy−c1dz=k(say) Using eqn (*):
x2+y2−2xy−[x2+y2−2xy]dx−dy−c1dz=kx2+y2−2xy−x2−y2+2xydx−dy−c1dz=k0dx−dy−c1dz=k⟹dx−dy−c1dz=0 Integrating through:
∫dx−∫dy−∫c1dz=∫0x−y−c1z=c2Recall:
c1=zx+y
∴x−y−(zx+y)z=c2x−y−x−y=c2⟹c2=−2y Therefore, the solution is:
f(u,v)=(zx+y,−2y)=0
Comments