Question #167409

(x^2+y^2)p+2xyq=dz/(x+y)z


1
Expert's answer
2021-03-07T16:45:05-0500

The Langrage equation is:


(x2+y2)p+2xyq=(x+y)z(x^2+y^2)p+2xyq=(x+y)z

From the general equaton:


Pp+Qq=RPp + Qq = R

From the above equation,

P=x2+y2Q=2xyR=(x+y)zP = x^2+ y^2\\ Q = 2xy\\ R = (x+y)z


From the auxilliary equation,


dxP=dyQ=dzR\dfrac{dx}{P} = \dfrac{dy}{Q} = \dfrac{dz}{R}

Hence:


dxx2+y2=dy2xy=dz(x+y)zeqn(i)\dfrac{dx}{x^2+y^2} = \dfrac{dy}{2xy} = \dfrac{dz}{(x+y)z} \qquad \cdots \cdots \cdots eqn(i)\\

From the first two and last ratios and solve, we have:


dx+dy(x2+y2)+2xy=dz(x+y)z\dfrac{dx+dy}{(x^2+y^2)+2xy}=\dfrac{dz}{(x+y)z}\\


Recall:


x2+y2=(x+y)22xyeqn()x^2+y^2 = (x+y)^2 - 2xy \qquad \cdots eqn (*) \\dx+dy(x+y)22xy+2xy=dzzx+ydx+dy(x+y)2=dzzx+ydx+dyx+y=dzzd(x+y)x+y=dzz\therefore \dfrac{dx+dy}{(x+y)^2 -2xy +2xy}=\dfrac{\frac{dz}{z}}{x+y}\\ \dfrac{dx+dy}{(x+y)^2}=\dfrac{\frac{dz}{z}}{x+y}\\ \dfrac{dx+dy}{x+y}=\dfrac{dz}{z}\\ \dfrac{d(x+y)}{x+y}=\dfrac{dz}{z}\\


Integrating both sides:


d(x+y)x+y=dzzln(x+y)=lnz+lncln(x+y)=lnczx+y=cz    c1=x+yzeqn(ii)\int \dfrac{d(x+y)}{x+y}=\int \dfrac{dz}{z}\\ \ln (x+y) = \ln z +\ln c\\ \ln (x+y) =\ln cz\\ x+y = cz\\ \implies c_1 = \dfrac{x+y}{z} \qquad \cdots\cdots eqn (ii)

Consider the last ratio in eqn (i):


dz(x+y)z\frac{dz}{(x+y)z}

From eqn (ii)


z=x+yc1z = \dfrac{x+y}{c_1}

Substituting the value of zz in the last ratio:


dz(x+y)(x+y)c1dz(x+y)2c1    c1dz(x+y)2eqn(iii)\frac{dz}{(x+y)\frac{(x+y)}{c_1}}\\ \frac{dz}{\frac{(x+y)^2}{c_1}}\\ \implies \frac{c_1dz}{(x+y)^2} \qquad \cdots eqn (iii)

By replacing the third ration in eqn (i) with eqn(iii)


dxx2+y2=dy2xy=c1dz(x+y)2\frac{dx}{x^2+y^2} = \frac{dy}{2xy} = \frac{c_1dz}{(x+y)^2}

Thus:


dxdyc1dzx2+y22xy(x+y)2=k(say)\frac{dx-dy-c_1dz}{x^2+y^2-2xy- (x+y)^2} = k \qquad \text{(say)}

Using eqn (*):


dxdyc1dzx2+y22xy[x2+y22xy]=kdxdyc1dzx2+y22xyx2y2+2xy=kdxdyc1dz0=k    dxdyc1dz=0\frac{dx-dy-c_1dz}{x^2+y^2-2xy- [x^2+y^2-2xy]} = k\\ \frac{dx-dy-c_1dz}{x^2+y^2-2xy- x^2-y^2+2xy} = k\\ \frac{dx-dy-c_1dz}{0} = k\\ \implies dx-dy-c_1dz = 0\\

Integrating through:


dxdyc1dz=0xyc1z=c2\int dx-\int dy-\int c_1dz = \int 0\\ x-y-c_1z=c_2\\

Recall:

c1=x+yzc_1 = \dfrac{x+y}{z}

xy(x+yz)z=c2xyxy=c2    c2=2y\therefore x-y-\Big(\frac{x+y}{z}\Big)z=c_2\\ x-y-x-y=c_2\\ \implies c_2 = -2y

Therefore, the solution is:


f(u,v)=(x+yz,  2y)=0f(u,v) = \Big(\dfrac{x+y}{z},\; -2y\Big) = 0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS