The Langrage equation is:
"(x^2+y^2)p+2xyq=(x+y)z" From the general equaton:
"Pp + Qq = R" From the above equation,
"P = x^2+ y^2\\\\\nQ = 2xy\\\\\nR = (x+y)z"
From the auxilliary equation,
"\\dfrac{dx}{P} = \\dfrac{dy}{Q} = \\dfrac{dz}{R}" Hence:
"\\dfrac{dx}{x^2+y^2} = \\dfrac{dy}{2xy} = \\dfrac{dz}{(x+y)z} \\qquad \\cdots \\cdots \\cdots eqn(i)\\\\"
From the first two and last ratios and solve, we have:
"\\dfrac{dx+dy}{(x^2+y^2)+2xy}=\\dfrac{dz}{(x+y)z}\\\\"
Recall:
"x^2+y^2 = (x+y)^2 - 2xy \\qquad \\cdots eqn (*) \\\\""\\therefore \\dfrac{dx+dy}{(x+y)^2 -2xy +2xy}=\\dfrac{\\frac{dz}{z}}{x+y}\\\\\n\\dfrac{dx+dy}{(x+y)^2}=\\dfrac{\\frac{dz}{z}}{x+y}\\\\\n\\dfrac{dx+dy}{x+y}=\\dfrac{dz}{z}\\\\\n\\dfrac{d(x+y)}{x+y}=\\dfrac{dz}{z}\\\\"
Integrating both sides:
"\\int \\dfrac{d(x+y)}{x+y}=\\int \\dfrac{dz}{z}\\\\\n\\ln (x+y) = \\ln z +\\ln c\\\\\n\\ln (x+y) =\\ln cz\\\\\nx+y = cz\\\\\n\\implies c_1 = \\dfrac{x+y}{z} \\qquad \\cdots\\cdots eqn (ii)"
Consider the last ratio in eqn (i):
"\\frac{dz}{(x+y)z}" From eqn (ii)
"z = \\dfrac{x+y}{c_1}" Substituting the value of "z" in the last ratio:
"\\frac{dz}{(x+y)\\frac{(x+y)}{c_1}}\\\\\n\\frac{dz}{\\frac{(x+y)^2}{c_1}}\\\\\n\\implies \\frac{c_1dz}{(x+y)^2} \\qquad \\cdots eqn (iii)"
By replacing the third ration in eqn (i) with eqn(iii)
"\\frac{dx}{x^2+y^2} = \\frac{dy}{2xy} = \\frac{c_1dz}{(x+y)^2}" Thus:
"\\frac{dx-dy-c_1dz}{x^2+y^2-2xy- (x+y)^2} = k \\qquad \\text{(say)}" Using eqn (*):
"\\frac{dx-dy-c_1dz}{x^2+y^2-2xy- [x^2+y^2-2xy]} = k\\\\\n\\frac{dx-dy-c_1dz}{x^2+y^2-2xy- x^2-y^2+2xy} = k\\\\\n\\frac{dx-dy-c_1dz}{0} = k\\\\\n\\implies dx-dy-c_1dz = 0\\\\" Integrating through:
"\\int dx-\\int dy-\\int c_1dz = \\int 0\\\\\nx-y-c_1z=c_2\\\\"Recall:
"c_1 = \\dfrac{x+y}{z}"
"\\therefore x-y-\\Big(\\frac{x+y}{z}\\Big)z=c_2\\\\\nx-y-x-y=c_2\\\\\n\\implies c_2 = -2y" Therefore, the solution is:
"f(u,v) = \\Big(\\dfrac{x+y}{z},\\; -2y\\Big) = 0"
Comments
Leave a comment