Question #166395

find the compute integral of p2x+q2y=z;using charpits method


1
Expert's answer
2021-02-25T01:51:58-0500

Let's solve the problem

f=p2x+q2yz=0f = p^2x+q^2y-z = 0

dpp+q2=dqq+q2=dz2(p2x+q2y)=dx2px=dy2q\large\frac{dp}{-p+q^2} = \large\frac{dq}{-q+q^2}=\large\frac{dz}{-2(p^2x+q^2y)}= \large\frac{dx}{-2px} = \large\frac{dy}{-2q}

2pxdp+p2xdx2px(p+p2)+p2(2px)=2qydq+q2dy2qy(q+q2)+q2(2qy)\large\frac{2pxdp+p^2xdx}{2px(-p+p^2)+p^2(-2px)}= \large\frac{2qydq+q^2dy}{2qy(-q+q^2)+q^2(-2qy)}

d(p2x)2p2x=2(q2y)2qy\large\frac{d(p^2x)}{-2p^2x} = \large\frac{2(q^2y)}{-2qy}

\large\frac{}{} d(p2x)p2x=d(q2y)q2y\large\frac{d(p^2x)}{p^2x} = \large\frac{d(q^2y)}{q^2y}

log(p2x)=log(q2)+logalog(p^2x)=log(q^2)+loga

p2x=q2yap^2x = q^2ya

aq2y+q2y=z        q2y(1+a)=zaq^2y+q^2y = z \space\space \space\space \space\space \space\space q^2y(1+a)=z

q=[z(1+a)y]12q = \large[\large\frac{z}{(1+a)y}]^{\frac{1}{2}}

p2=q2yaxp^2 = \large\frac{q^2ya}{x}

p=q(yax)12=[2a(1+a)x]12p = q\large(\frac{ya}{x})^\frac{1}{2} = [\frac{2a}{(1+a)x}]^{\frac{1}{2}}

dz=pdx+qdydz = pdx+qdy

dz={za(1+a)x}dz = \large\{\frac{za}{(1+a)x}\} dx+{za(1+a)y}dx + \large\{\frac{za}{(1+a)y}\} dydy

Answer: (1+a)1/2z=ax+y+b(1+a)^{1/2}\sqrt{z} = \sqrt{a}\sqrt{x}+\sqrt{y} + b



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS