find the compute integral of p2x+q2y=z;using charpits method
Let's solve the problem
"f = p^2x+q^2y-z = 0"
"\\large\\frac{dp}{-p+q^2} = \\large\\frac{dq}{-q+q^2}=\\large\\frac{dz}{-2(p^2x+q^2y)}= \\large\\frac{dx}{-2px} = \\large\\frac{dy}{-2q}"
"\\large\\frac{2pxdp+p^2xdx}{2px(-p+p^2)+p^2(-2px)}= \\large\\frac{2qydq+q^2dy}{2qy(-q+q^2)+q^2(-2qy)}"
"\\large\\frac{d(p^2x)}{-2p^2x} = \\large\\frac{2(q^2y)}{-2qy}"
"\\large\\frac{}{}" "\\large\\frac{d(p^2x)}{p^2x} = \\large\\frac{d(q^2y)}{q^2y}"
"log(p^2x)=log(q^2)+loga"
"p^2x = q^2ya"
"aq^2y+q^2y = z \\space\\space \\space\\space \\space\\space \\space\\space q^2y(1+a)=z"
"q = \\large[\\large\\frac{z}{(1+a)y}]^{\\frac{1}{2}}"
"p^2 = \\large\\frac{q^2ya}{x}"
"p = q\\large(\\frac{ya}{x})^\\frac{1}{2} = [\\frac{2a}{(1+a)x}]^{\\frac{1}{2}}"
"dz = pdx+qdy"
"dz = \\large\\{\\frac{za}{(1+a)x}\\}" "dx + \\large\\{\\frac{za}{(1+a)y}\\}" "dy"
Answer: "(1+a)^{1\/2}\\sqrt{z} = \\sqrt{a}\\sqrt{x}+\\sqrt{y} + b"
Comments
Leave a comment