Let's solve the problem
f = p 2 x + q 2 y − z = 0 f = p^2x+q^2y-z = 0 f = p 2 x + q 2 y − z = 0
d p − p + q 2 = d q − q + q 2 = d z − 2 ( p 2 x + q 2 y ) = d x − 2 p x = d y − 2 q \large\frac{dp}{-p+q^2} = \large\frac{dq}{-q+q^2}=\large\frac{dz}{-2(p^2x+q^2y)}= \large\frac{dx}{-2px} = \large\frac{dy}{-2q} − p + q 2 d p = − q + q 2 d q = − 2 ( p 2 x + q 2 y ) d z = − 2 p x d x = − 2 q d y
2 p x d p + p 2 x d x 2 p x ( − p + p 2 ) + p 2 ( − 2 p x ) = 2 q y d q + q 2 d y 2 q y ( − q + q 2 ) + q 2 ( − 2 q y ) \large\frac{2pxdp+p^2xdx}{2px(-p+p^2)+p^2(-2px)}= \large\frac{2qydq+q^2dy}{2qy(-q+q^2)+q^2(-2qy)} 2 p x ( − p + p 2 ) + p 2 ( − 2 p x ) 2 p x d p + p 2 x d x = 2 q y ( − q + q 2 ) + q 2 ( − 2 q y ) 2 q y d q + q 2 d y
d ( p 2 x ) − 2 p 2 x = 2 ( q 2 y ) − 2 q y \large\frac{d(p^2x)}{-2p^2x} = \large\frac{2(q^2y)}{-2qy} − 2 p 2 x d ( p 2 x ) = − 2 q y 2 ( q 2 y )
\large\frac{}{} d ( p 2 x ) p 2 x = d ( q 2 y ) q 2 y \large\frac{d(p^2x)}{p^2x} = \large\frac{d(q^2y)}{q^2y} p 2 x d ( p 2 x ) = q 2 y d ( q 2 y )
l o g ( p 2 x ) = l o g ( q 2 ) + l o g a log(p^2x)=log(q^2)+loga l o g ( p 2 x ) = l o g ( q 2 ) + l o g a
p 2 x = q 2 y a p^2x = q^2ya p 2 x = q 2 y a
a q 2 y + q 2 y = z q 2 y ( 1 + a ) = z aq^2y+q^2y = z \space\space \space\space \space\space \space\space q^2y(1+a)=z a q 2 y + q 2 y = z q 2 y ( 1 + a ) = z
q = [ z ( 1 + a ) y ] 1 2 q = \large[\large\frac{z}{(1+a)y}]^{\frac{1}{2}} q = [ ( 1 + a ) y z ] 2 1
p 2 = q 2 y a x p^2 = \large\frac{q^2ya}{x} p 2 = x q 2 y a
p = q ( y a x ) 1 2 = [ 2 a ( 1 + a ) x ] 1 2 p = q\large(\frac{ya}{x})^\frac{1}{2} = [\frac{2a}{(1+a)x}]^{\frac{1}{2}} p = q ( x y a ) 2 1 = [ ( 1 + a ) x 2 a ] 2 1
d z = p d x + q d y dz = pdx+qdy d z = p d x + q d y
d z = { z a ( 1 + a ) x } dz = \large\{\frac{za}{(1+a)x}\} d z = { ( 1 + a ) x z a } d x + { z a ( 1 + a ) y } dx + \large\{\frac{za}{(1+a)y}\} d x + { ( 1 + a ) y z a } d y dy d y
Answer: ( 1 + a ) 1 / 2 z = a x + y + b (1+a)^{1/2}\sqrt{z} = \sqrt{a}\sqrt{x}+\sqrt{y} + b ( 1 + a ) 1/2 z = a x + y + b
Comments