Let's solve the problem
f=p2x+q2y−z=0
−p+q2dp=−q+q2dq=−2(p2x+q2y)dz=−2pxdx=−2qdy
2px(−p+p2)+p2(−2px)2pxdp+p2xdx=2qy(−q+q2)+q2(−2qy)2qydq+q2dy
−2p2xd(p2x)=−2qy2(q2y)
p2xd(p2x)=q2yd(q2y)
log(p2x)=log(q2)+loga
p2x=q2ya
aq2y+q2y=z q2y(1+a)=z
q=[(1+a)yz]21
p2=xq2ya
p=q(xya)21=[(1+a)x2a]21
dz=pdx+qdy
dz={(1+a)xza} dx+{(1+a)yza} dy
Answer: (1+a)1/2z=ax+y+b
Comments