define odd even and periodic function and obtain fourier series fx=x,-2<x<2
An even function is any function f such that
f(−x) = f(x), for all x in its domain.
Examples: cos(x), sec(x), any constant function,
An odd function is any function f such that
f(−x) = −f(x), for all x in its domain.
Examples: sin(x), tan(x), csc(x), cot(x),
A function f(x) is called a periodic function if ∃ p > 0
(called a period of f) such that f(x + p) = f(x) for all x.
SOLUTION TO THE FOURIER SERIES
Firstly, we try to get "a_0"
"a_0=\\frac{1}{L}\\int_{-L}^Lf(x)cos\\frac{m\u03c0x}{L}dx\\\\\nWhere L=2\\\\\na_0=\\frac{1}{2}\\int_{-2}^2xdx\\\\\na_0=\\frac{1}{2}\\frac{x^2}{2}|_{-2}^2\\\\\na_0=\\frac{1}{2}(2-2)=0\\\\\na_0=0\\\\\n\\text{The rest of cosine coefficient for n=1, 2, 3 are}\\\\\na_n=\\frac{1}{L}\\int_{-L}^Lf(x)cos\\frac{n\u03c0x}{L}dx\\\\\na_n=\\frac{1}{2}\\int_{-2}^2xcos\\frac{n\u03c0x}{2}dx\\\\\n\\text{Using integration by part}\\\\\na_n=\\frac{1}{2}(\\frac{2x}{n\u03c0}sin\\frac{n\u03c0x}{2}|_{-2}^2-\\frac{2}{n\u03c0}\\int_{-2}^2sin\\frac{n\u03c0x}{2}dx\\\\\na_n=\\frac{1}{2}(\\frac{2x}{n\u03c0}sin\\frac{n\u03c0x}{2}+\\frac{4}{n^2\u03c0^2}cos\\frac{n\u03c0x}{2}|_{-2}^2)\/\/\na_n=\\frac{1}{2}((0+\\frac{4}{n^2\u03c0^2}cos(n\u03c0)-(0+\\frac{4}{n^2\u03c0^2}cos(-n\u03c0)\\\\\na_n=0\\\\\n\\text{Hence there is no nonzero cosine coefficient for the function}\\\\\n\\text{The sine coefficient for n=1, 2, 3...are}\\\\\n\nb_n=\\frac{1}{L}\\int_{-L}^Lf(x)sin\\frac{n\u03c0x}{L}dx\\\\\nb_n=\\frac{1}{2}\\int_{-2}^2xsin\\frac{n\u03c0x}{2}dx\\\\\n\\text{Using integration by part}\\\\\nb_n=\\frac{1}{2}(\\frac{-2x}{n\u03c0}cos\\frac{n\u03c0x}{2}|_{-2}^2-\\frac{-2}{n\u03c0}\\int_{-2}^2cos\\frac{n\u03c0x}{2}dx\\\\\nb_n=\\frac{1}{2}(\\frac{-2x}{n\u03c0}cos\\frac{n\u03c0x}{2}+\\frac{4}{n^2\u03c0^2}sin\\frac{n\u03c0x}{2}|_{-2}^2)\/\/\nb_n=\\frac{1}{2}((\\frac{-4}{n\u03c0}cos(n\u03c0)-0)-(\\frac{4}{n\u03c0}cos(-n\u03c0)-0))\\\\\nb_n=\\frac{-2}{n\u03c0}(cos(n\u03c0)+cos(n\u03c0))\\\\\nb_n=\\frac{-4}{n\u03c0}cosn\u03c0\\\\\n\\text{When n is odd}\\\\\nf(x)=\\frac{4}{n\u03c0}\\\\\n\\text{When n is even}\\\\\nf(x)=\\frac{-4}{n\u03c0}\\\\\nTherefore, \\\\\nf(x)=\\frac{4}{\u03c0}\\sum_ {n=1}^\\infin\\frac{({-1})^{n+1}}{n}sin\\frac{n\u03c0x}{2}\\\\."
Comments
Leave a comment