An even function is any function f such that
f(−x) = f(x), for all x in its domain.
Examples: cos(x), sec(x), any constant function,
An odd function is any function f such that
f(−x) = −f(x), for all x in its domain.
Examples: sin(x), tan(x), csc(x), cot(x),
A function f(x) is called a periodic function if ∃ p > 0
(called a period of f) such that f(x + p) = f(x) for all x.
SOLUTION TO THE FOURIER SERIES
Firstly, we try to get a0
a0=L1∫−LLf(x)cosLmπxdxWhereL=2a0=21∫−22xdxa0=212x2∣−22a0=21(2−2)=0a0=0The rest of cosine coefficient for n=1, 2, 3 arean=L1∫−LLf(x)cosLnπxdxan=21∫−22xcos2nπxdxUsing integration by partan=21(nπ2xsin2nπx∣−22−nπ2∫−22sin2nπxdxan=21(nπ2xsin2nπx+n2π24cos2nπx∣−22)//an=21((0+n2π24cos(nπ)−(0+n2π24cos(−nπ)an=0Hence there is no nonzero cosine coefficient for the functionThe sine coefficient for n=1, 2, 3...arebn=L1∫−LLf(x)sinLnπxdxbn=21∫−22xsin2nπxdxUsing integration by partbn=21(nπ−2xcos2nπx∣−22−nπ−2∫−22cos2nπxdxbn=21(nπ−2xcos2nπx+n2π24sin2nπx∣−22)//bn=21((nπ−4cos(nπ)−0)−(nπ4cos(−nπ)−0))bn=nπ−2(cos(nπ)+cos(nπ))bn=nπ−4cosnπWhen n is oddf(x)=nπ4When n is evenf(x)=nπ−4Therefore,f(x)=π4∑n=1∞n(−1)n+1sin2nπx.
Comments