- y = A cos (4x) + B sin (4x)
Given differential equation is-
y=Acos4x+Bsin4xy=Acos4x+Bsin4xy=Acos4x+Bsin4x
Differentiate above equation w.r.t. 'x'
⇒dydx=−4Asin4x+4Bcos4x\Rightarrow \dfrac{dy}{dx}=-4Asin4x+4Bcos4x⇒dxdy=−4Asin4x+4Bcos4x
Again differentiating w.r.t. 'x'
d2ydx2=−16Acos4x−16Bsin4x\dfrac{d^2y}{dx^2}=-16Acos4x-16Bsin4xdx2d2y=−16Acos4x−16Bsin4x
⇒d2ydx2=−16(Acos4x+Bsin4x)\Rightarrow \dfrac{d^2y}{dx^2}=-16(Acos4x+Bsin4x)⇒dx2d2y=−16(Acos4x+Bsin4x)
⇒d2ydx2=−16(y)\Rightarrow \dfrac{d^2y}{dx^2}=-16(y)⇒dx2d2y=−16(y)
⇒d2ydx2+16y=0\Rightarrow \dfrac{d^2y}{dx^2}+16y=0⇒dx2d2y+16y=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments