Variable Separable: Give the particular and general solution
1. dr/dt = —4rt;
when t =0, r = 0.
2. 2xyy’ =1+y?
when x = 2, y =3
3. xyy’=1+y?
when x =2, y =3.
4. 2ydx = 3xdy
When x =2, y= 1.
5. 2ydx = 3xdy
When x = —2, y= 1.
6. 2ydx = 3xdy;
When x =2, y= —l.
7. y' =x^ (y— x^2);
when x= 0, y =0.
8. xy^2 dx +e^x dy =0;
when x=∞, y=1/2
9. (2a^2 —r^2) dr = r3 sin Ɵ dƟ
When Ɵ =0, r =a.
10.v(dv/dx) = g
when x = xo, v = vo
Solution.
1)
"\\frac{dr}{dt}=-4rt\n\\newline\n\\frac{dr}{r}=-4tdt\\newline\n\\ln|r|=-2t^2+C \\newline\nr=C_1e^{-2t^2}" general solution
When "t=0, r=0," then "C_1=0."
"r=0" particular solution.
2)
"2xyy'=1+y \\newline\n\\frac{y}{y+1}dy=\\frac{dx}{2x} \\newline\ny+1-\\ln{|y+1|}=\\frac{1}{2}\\ln{|x|}+C \\newline\ny-\\ln{|y+1|}=\\frac{1}{2}\\ln{|x|}+C_1 \\newline" general solution
When "x=2, y=3," then
"3-\\ln{4}=\\ln{\\sqrt{2}}+C_1, \\newline\nC_1=3-\\ln{4}-\\ln{\\sqrt{2}}=3-\\ln{\\sqrt{32}}."
"y-\\ln{|y+1|}=\\frac{1}{2}\\ln{|x|}+3-\\ln{\\sqrt{32}}" particular solution.
3)
"xyy'=1+y \\newline\n\\frac{y}{y+1}dy=\\frac{dx}{x} \\newline\ny+1-\\ln{|y+1|}=\\ln{|x|}+C \\newline\ny-\\ln{|y+1|}=\\ln{|x|}+C_1 \\newline" general solution
When "x=2, y=3," then
"3-\\ln{4}=\\ln{2}+C_1, \\newline\nC_1=3-\\ln{4}-\\ln{2}=3-\\ln{8}."
"y-\\ln{|y+1|}=\\ln{|x|}+3-\\ln{8}" particular solution.
4)
"2ydx=3xdy \\newline\n2\\frac{dx}{x}=3\\frac{dy}{y} \\newline\n2\\ln{|x|}=3\\ln{|y|}+C \\newline\ny=C_1x^{\\frac{2}{3}}" general solution
When "x=2, y=1," then
"1=C_12^{\\frac{2}{3}}, C_1=\\frac{1}{\\sqrt[3]{4}}=\\frac{\\sqrt[3]{2}}{2}."
"y=\\frac{\\sqrt[3]2}{2}x^{\\frac{2}{3}}" particular solution.
5)
"2ydx=3xdy \\newline\n2\\frac{dx}{x}=3\\frac{dy}{y} \\newline\n2\\ln{|x|}=3\\ln{|y|}+C \\newline\ny=C_1x^{\\frac{2}{3}}" general solution
When "x=-2, y=1," then
"1=C_1(-2)^{\\frac{2}{3}}, C_1=-\\frac{1}{\\sqrt[3]{4}}=-\\frac{\\sqrt[3]{2}}{2}."
"y=-\\frac{\\sqrt[3]2}{2}x^{\\frac{2}{3}}" particular solution.
6)
"2ydx=3xdy \\newline\n2\\frac{dx}{x}=3\\frac{dy}{y} \\newline\n2\\ln{|x|}=3\\ln{|y|}+C \\newline\ny=C_1x^{\\frac{2}{3}}" general solution
When "x=2, y=-1," then
"-1=C_12^{\\frac{2}{3}}, C_1=-\\frac{1}{\\sqrt[3]{4}}=-\\frac{\\sqrt[3]{2}}{2}."
"y=-\\frac{\\sqrt[3]2}{2}x^{\\frac{2}{3}}" particular solution.
7)
"y'=x^{y-x^2}"
This is not an equation with separate variables.
Maybe there is an error in the task condition?
8)
"xy^2dx+e^xdy=0 \\newline\n\\frac{xdx}{e^x}=-\\frac{dy}{y^2} \\newline\n-xe^{-x}-e^{-x}=\\frac{1}{y}+C \\newline\ny=-\\frac{e^x}{x+1+Ce^x}" general solution
When "x=\\infty, y=\\frac{1}{2}," then
"C=-{2}."
"y=-\\frac{e^x}{x+1-2e^x}" particular solution.
9)
"(2a^2-r^2)dr=r^3\\sin{\\theta}d\\theta \\newline\n\\frac{2a^2-r^2}{r^3}dr=\\sin{\\theta}d\\theta \\newline\n2a^2\\int r^{-3}dr-\\int \\frac{dr}{r}=\\int \\sin{\\theta}d\\theta \\newline\n-\\frac{a^2}{r^2}-\\ln{|r|}=-\\cos{\\theta}+C \\newline\n\\ln{|r|}=\\cos{\\theta}-\\frac{a^2}{r^2}+C_1 \\newline" general solution
When "\\theta=0, r=a," then
"C_1=\\ln{|a|}-1+1=\\ln{|a|}."
"\\ln{|r|}=\\cos{\\theta}-\\frac{a^2}{r^2}+\\ln{|a|}."
10)
"v\\frac{dv}{dx}=g \\newline\nvdv=gdx \\newline\n\\frac{v^2}{2}=gx+C \\newline\nv^2=2gx+C_1" general solution
When "x=x_0, v=v_0," then
"C_1=v_0^2-2gx_0."
"v^2=2gx+v_0^2-2gx_0, \\text{ or} \\newline\nv=\\pm\\sqrt{2gx+v_0^2-2gx_0}" particular solution.
Comments
Leave a comment