Solution.
1)
dtdr=−4rtrdr=−4tdtln∣r∣=−2t2+Cr=C1e−2t2 general solution
When t=0,r=0, then C1=0.
r=0 particular solution.
2)
2xyy′=1+yy+1ydy=2xdxy+1−ln∣y+1∣=21ln∣x∣+Cy−ln∣y+1∣=21ln∣x∣+C1 general solution
When x=2,y=3, then
3−ln4=ln2+C1,C1=3−ln4−ln2=3−ln32.
y−ln∣y+1∣=21ln∣x∣+3−ln32 particular solution.
3)
xyy′=1+yy+1ydy=xdxy+1−ln∣y+1∣=ln∣x∣+Cy−ln∣y+1∣=ln∣x∣+C1 general solution
When x=2,y=3, then
3−ln4=ln2+C1,C1=3−ln4−ln2=3−ln8.
y−ln∣y+1∣=ln∣x∣+3−ln8 particular solution.
4)
2ydx=3xdy2xdx=3ydy2ln∣x∣=3ln∣y∣+Cy=C1x32 general solution
When x=2,y=1, then
1=C1232,C1=341=232.
y=232x32 particular solution.
5)
2ydx=3xdy2xdx=3ydy2ln∣x∣=3ln∣y∣+Cy=C1x32 general solution
When x=−2,y=1, then
1=C1(−2)32,C1=−341=−232.
y=−232x32 particular solution.
6)
2ydx=3xdy2xdx=3ydy2ln∣x∣=3ln∣y∣+Cy=C1x32 general solution
When x=2,y=−1, then
−1=C1232,C1=−341=−232.
y=−232x32 particular solution.
7)
y′=xy−x2
This is not an equation with separate variables.
Maybe there is an error in the task condition?
8)
xy2dx+exdy=0exxdx=−y2dy−xe−x−e−x=y1+Cy=−x+1+Cexex general solution
When x=∞,y=21, then
C=−2.
y=−x+1−2exex particular solution.
9)
(2a2−r2)dr=r3sinθdθr32a2−r2dr=sinθdθ2a2∫r−3dr−∫rdr=∫sinθdθ−r2a2−ln∣r∣=−cosθ+Cln∣r∣=cosθ−r2a2+C1 general solution
When θ=0,r=a, then
C1=ln∣a∣−1+1=ln∣a∣.
ln∣r∣=cosθ−r2a2+ln∣a∣.
10)
vdxdv=gvdv=gdx2v2=gx+Cv2=2gx+C1 general solution
When x=x0,v=v0, then
C1=v02−2gx0.
v2=2gx+v02−2gx0, orv=±2gx+v02−2gx0 particular solution.
Comments