Question #167099

Variable Separable: Give the particular and general solution

1. dr/dt = —4rt;

when t =0, r = 0.


2. 2xyy’ =1+y?

when x = 2, y =3


3. xyy’=1+y?

when x =2, y =3.


4. 2ydx = 3xdy

When x =2, y= 1.


5. 2ydx = 3xdy

When x = —2, y= 1.


6. 2ydx = 3xdy;

When x =2, y= —l.


7. y' =x^ (y— x^2);

when x= 0, y =0.


8. xy^2 dx +e^x dy =0;

when x=∞, y=1/2


9. (2a^2 —r^2) dr = r3 sin Ɵ dƟ

When Ɵ =0, r =a.


10.v(dv/dx) = g

when x = xo, v = vo


1
Expert's answer
2021-02-28T07:38:58-0500

Solution.

1)

drdt=4rtdrr=4tdtlnr=2t2+Cr=C1e2t2\frac{dr}{dt}=-4rt \newline \frac{dr}{r}=-4tdt\newline \ln|r|=-2t^2+C \newline r=C_1e^{-2t^2} general solution

When t=0,r=0,t=0, r=0, then C1=0.C_1=0.

r=0r=0 particular solution.

2)

2xyy=1+yyy+1dy=dx2xy+1lny+1=12lnx+Cylny+1=12lnx+C12xyy'=1+y \newline \frac{y}{y+1}dy=\frac{dx}{2x} \newline y+1-\ln{|y+1|}=\frac{1}{2}\ln{|x|}+C \newline y-\ln{|y+1|}=\frac{1}{2}\ln{|x|}+C_1 \newline general solution

When x=2,y=3,x=2, y=3, then

3ln4=ln2+C1,C1=3ln4ln2=3ln32.3-\ln{4}=\ln{\sqrt{2}}+C_1, \newline C_1=3-\ln{4}-\ln{\sqrt{2}}=3-\ln{\sqrt{32}}.

ylny+1=12lnx+3ln32y-\ln{|y+1|}=\frac{1}{2}\ln{|x|}+3-\ln{\sqrt{32}} particular solution.

3)

xyy=1+yyy+1dy=dxxy+1lny+1=lnx+Cylny+1=lnx+C1xyy'=1+y \newline \frac{y}{y+1}dy=\frac{dx}{x} \newline y+1-\ln{|y+1|}=\ln{|x|}+C \newline y-\ln{|y+1|}=\ln{|x|}+C_1 \newline general solution

When x=2,y=3,x=2, y=3, then

3ln4=ln2+C1,C1=3ln4ln2=3ln8.3-\ln{4}=\ln{2}+C_1, \newline C_1=3-\ln{4}-\ln{2}=3-\ln{8}.

ylny+1=lnx+3ln8y-\ln{|y+1|}=\ln{|x|}+3-\ln{8} particular solution.

4)

2ydx=3xdy2dxx=3dyy2lnx=3lny+Cy=C1x232ydx=3xdy \newline 2\frac{dx}{x}=3\frac{dy}{y} \newline 2\ln{|x|}=3\ln{|y|}+C \newline y=C_1x^{\frac{2}{3}} general solution

When x=2,y=1,x=2, y=1, then

1=C1223,C1=143=232.1=C_12^{\frac{2}{3}}, C_1=\frac{1}{\sqrt[3]{4}}=\frac{\sqrt[3]{2}}{2}.

y=232x23y=\frac{\sqrt[3]2}{2}x^{\frac{2}{3}} particular solution.

5)

2ydx=3xdy2dxx=3dyy2lnx=3lny+Cy=C1x232ydx=3xdy \newline 2\frac{dx}{x}=3\frac{dy}{y} \newline 2\ln{|x|}=3\ln{|y|}+C \newline y=C_1x^{\frac{2}{3}} general solution

When x=2,y=1,x=-2, y=1, then

1=C1(2)23,C1=143=232.1=C_1(-2)^{\frac{2}{3}}, C_1=-\frac{1}{\sqrt[3]{4}}=-\frac{\sqrt[3]{2}}{2}.

y=232x23y=-\frac{\sqrt[3]2}{2}x^{\frac{2}{3}} particular solution.

6)

2ydx=3xdy2dxx=3dyy2lnx=3lny+Cy=C1x232ydx=3xdy \newline 2\frac{dx}{x}=3\frac{dy}{y} \newline 2\ln{|x|}=3\ln{|y|}+C \newline y=C_1x^{\frac{2}{3}} general solution

When x=2,y=1,x=2, y=-1, then

1=C1223,C1=143=232.-1=C_12^{\frac{2}{3}}, C_1=-\frac{1}{\sqrt[3]{4}}=-\frac{\sqrt[3]{2}}{2}.

y=232x23y=-\frac{\sqrt[3]2}{2}x^{\frac{2}{3}} particular solution.

7)

y=xyx2y'=x^{y-x^2}

This is not an equation with separate variables.

Maybe there is an error in the task condition?

8)

xy2dx+exdy=0xdxex=dyy2xexex=1y+Cy=exx+1+Cexxy^2dx+e^xdy=0 \newline \frac{xdx}{e^x}=-\frac{dy}{y^2} \newline -xe^{-x}-e^{-x}=\frac{1}{y}+C \newline y=-\frac{e^x}{x+1+Ce^x} general solution

When x=,y=12,x=\infty, y=\frac{1}{2}, then

C=2.C=-{2}.

y=exx+12exy=-\frac{e^x}{x+1-2e^x} particular solution.

9)

(2a2r2)dr=r3sinθdθ2a2r2r3dr=sinθdθ2a2r3drdrr=sinθdθa2r2lnr=cosθ+Clnr=cosθa2r2+C1(2a^2-r^2)dr=r^3\sin{\theta}d\theta \newline \frac{2a^2-r^2}{r^3}dr=\sin{\theta}d\theta \newline 2a^2\int r^{-3}dr-\int \frac{dr}{r}=\int \sin{\theta}d\theta \newline -\frac{a^2}{r^2}-\ln{|r|}=-\cos{\theta}+C \newline \ln{|r|}=\cos{\theta}-\frac{a^2}{r^2}+C_1 \newline general solution

When θ=0,r=a,\theta=0, r=a, then

C1=lna1+1=lna.C_1=\ln{|a|}-1+1=\ln{|a|}.

lnr=cosθa2r2+lna.\ln{|r|}=\cos{\theta}-\frac{a^2}{r^2}+\ln{|a|}.

10)

vdvdx=gvdv=gdxv22=gx+Cv2=2gx+C1v\frac{dv}{dx}=g \newline vdv=gdx \newline \frac{v^2}{2}=gx+C \newline v^2=2gx+C_1 general solution

When x=x0,v=v0,x=x_0, v=v_0, then

C1=v022gx0.C_1=v_0^2-2gx_0.

v2=2gx+v022gx0, orv=±2gx+v022gx0v^2=2gx+v_0^2-2gx_0, \text{ or} \newline v=\pm\sqrt{2gx+v_0^2-2gx_0} particular solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS