Question #167615

find the general solution of the differential equation using undetermined coefficients, y^(iv) -2y"'+2y"=3e^-x+2e^-x.x+e^-sinx.


1
Expert's answer
2021-03-01T07:20:44-0500

find the general solution of the differential equation using undetermined coefficients, y^(iv) -2y"'+2y"=3e^-x+2e^-x.x+e^-sinx.

Solution:

We can solve differential equation using undetermined coefficients if the right (heterogeneous) part of the equation is in the form:

enPme^nP_m , where PmP_m is a polynomial of degree mm;

or in the form:

eα(Pkcos(βx)+Plsin(βx))e^\alpha(P_k\cos{(\beta x)}+P_l\sin{(\beta x)}) , where PkP_k and PlP_l are polynomials of degrees kk and ll.

Since esinxe^{-\sin{x}} cannot be presented as enPme^nP_m or eα(Pkcos(βx)+Plsin(βx))e^\alpha(P_k\cos{(\beta x)}+P_l\sin{(\beta x)}), we can conclude that a question consists mistake. Assume the correct equation is the following:

yIV2y+2y=3ex+2exx+exsinxy^{IV}-2y'''+2y''=3e^{-x}+2e^{-x}\cdot x+e^{-x}\cdot \sin{x} (*)

Let's find the complementary solution to this differential equation:

yIV2y+2y=0y^{IV}-2y'''+2y''=0

The characteristic equation for this differential equation is the following:

r42r3+2r2=0r^4-2r^3+2r^2=0

r2(r22r+2)=0r^2(r^2-2r+2)=0

r=0r=0 ; r=1±ir=1\pm i

The complementary solution:

yc=C1+C2x+ex(C3cosx+C4sinx)y_c=C_1+C_2\cdot x+e^{x}(C_3\cos{x}+C_4\sin{x})

Let's proceed with finding a particular solution. The form of the particular solution would be:

yp=ex(Ax+B+Ccosx+Dsinx)y_p=e^{-x}(Ax+B+C\cos{x}+D\sin{x})

yp=exy_p'=e^{-x}(AAxB+(DC)cosx(C+D)sinx)(A-Ax-B+(D-C)\cos{x}-(C+D)\sin{x})

yp=exy_p''=e^{-x}(Ax2A+B2Dcosx+2Csinx)(Ax-2A+B-2D\cos{x}+2C\sin{x})

yp=exy_p'''=e^{-x}(Ax+3AB+2(C+D)cosx+2(DC)sinx)(-Ax+3A-B+2(C+D)\cos{x}+2(D-C)\sin{x})

ypIV=exy_p^{IV}=e^{-x}(Ax4A+B4Ccosx4Dsinx)(Ax-4A+B-4C\cos{x}-4D\sin{x})

Substituting ypIVy_p^{IV}, ypy_p''' and ypy_p'' into the (*) gives:

ex(Ax4A+B4Ccosx4Dsinx)e^{-x}(Ax-4A+B-4C\cos{x}-4D\sin{x})-2ex(Ax+3AB+2(C+D)cosx2e^{-x}(-Ax+3A-B+2(C+D)\cos{x} +2(DC)sinx)++2(D-C)\sin{x})+ 2ex(Ax2A+B2Dcosx+2Csinx)=2e^{-x}(Ax-2A+B-2D\cos{x}+2C\sin{x})= 3ex+2exx+exsinx3e^{-x}+2e^{-x}\cdot x+e^{-x}\cdot \sin{x}

Choose AA , BB , CC, and DD so that the coefficients of the exponentials on either side of the equal sign are the same:

A=25A=\frac25 , B=4325B=\frac{43}{25} , C=116C=\frac{1}{16}, D=116D=-\frac{1}{16}.

The particular solution:

yp=ex(25x+4325+116cosx116sinx)y_p=e^{-x}(\frac25x+\frac{43}{25}+\frac{1}{16}\cos{x}-\frac{1}{16}\sin{x})

General solution:

y=yc+yp=y=y_c+y_p= C1+C2x+ex(C3cosx+C4sinx)+C_1+C_2\cdot x+e^{x}(C_3\cos{x}+C_4\sin{x})+ ex(25x+4325+116cosx116sinx)e^{-x}(\frac25x+\frac{43}{25}+\frac{1}{16}\cos{x}-\frac{1}{16}\sin{x})

Solution:

y=C1+C2x+ex(C3cosx+C4sinx)+y=C_1+C_2\cdot x+e^{x}(C_3\cos{x}+C_4\sin{x})+ ex(25x+4325+116cosx116sinx)e^{-x}(\frac25x+\frac{43}{25}+\frac{1}{16}\cos{x}-\frac{1}{16}\sin{x})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS