find the general solution of the differential equation using undetermined coefficients, y^(iv) -2y"'+2y"=3e^-x+2e^-x.x+e^-sinx.
find the general solution of the differential equation using undetermined coefficients, y^(iv) -2y"'+2y"=3e^-x+2e^-x.x+e^-sinx.
Solution:
We can solve differential equation using undetermined coefficients if the right (heterogeneous) part of the equation is in the form:
"e^nP_m" , where "P_m" is a polynomial of degree "m";
or in the form:
"e^\\alpha(P_k\\cos{(\\beta x)}+P_l\\sin{(\\beta x)})" , where "P_k" and "P_l" are polynomials of degrees "k" and "l".
Since "e^{-\\sin{x}}" cannot be presented as "e^nP_m" or "e^\\alpha(P_k\\cos{(\\beta x)}+P_l\\sin{(\\beta x)})", we can conclude that a question consists mistake. Assume the correct equation is the following:
"y^{IV}-2y'''+2y''=3e^{-x}+2e^{-x}\\cdot x+e^{-x}\\cdot \\sin{x}" (*)
Let's find the complementary solution to this differential equation:
"y^{IV}-2y'''+2y''=0"
The characteristic equation for this differential equation is the following:
"r^4-2r^3+2r^2=0"
"r^2(r^2-2r+2)=0"
"r=0" ; "r=1\\pm i"
The complementary solution:
"y_c=C_1+C_2\\cdot x+e^{x}(C_3\\cos{x}+C_4\\sin{x})"
Let's proceed with finding a particular solution. The form of the particular solution would be:
"y_p=e^{-x}(Ax+B+C\\cos{x}+D\\sin{x})"
"y_p'=e^{-x}""(A-Ax-B+(D-C)\\cos{x}-(C+D)\\sin{x})"
"y_p''=e^{-x}""(Ax-2A+B-2D\\cos{x}+2C\\sin{x})"
"y_p'''=e^{-x}""(-Ax+3A-B+2(C+D)\\cos{x}+2(D-C)\\sin{x})"
"y_p^{IV}=e^{-x}""(Ax-4A+B-4C\\cos{x}-4D\\sin{x})"
Substituting "y_p^{IV}", "y_p'''" and "y_p''" into the (*) gives:
"e^{-x}(Ax-4A+B-4C\\cos{x}-4D\\sin{x})-""2e^{-x}(-Ax+3A-B+2(C+D)\\cos{x}" "+2(D-C)\\sin{x})+" "2e^{-x}(Ax-2A+B-2D\\cos{x}+2C\\sin{x})=" "3e^{-x}+2e^{-x}\\cdot x+e^{-x}\\cdot \\sin{x}"
Choose "A" , "B" , "C", and "D" so that the coefficients of the exponentials on either side of the equal sign are the same:
"A=\\frac25" , "B=\\frac{43}{25}" , "C=\\frac{1}{16}", "D=-\\frac{1}{16}".
The particular solution:
"y_p=e^{-x}(\\frac25x+\\frac{43}{25}+\\frac{1}{16}\\cos{x}-\\frac{1}{16}\\sin{x})"
General solution:
"y=y_c+y_p=" "C_1+C_2\\cdot x+e^{x}(C_3\\cos{x}+C_4\\sin{x})+" "e^{-x}(\\frac25x+\\frac{43}{25}+\\frac{1}{16}\\cos{x}-\\frac{1}{16}\\sin{x})"
Solution:
"y=C_1+C_2\\cdot x+e^{x}(C_3\\cos{x}+C_4\\sin{x})+" "e^{-x}(\\frac25x+\\frac{43}{25}+\\frac{1}{16}\\cos{x}-\\frac{1}{16}\\sin{x})"
Comments
Leave a comment