(x^2+y^2)p +2xyq=(x+y)z
The given equation is
"(x\u00b2+y\u00b2) p + 2xyq = (x+y)z"
The subsidiary equations are
"\\dfrac{dx}{x\u00b2+y\u00b2} = \\dfrac{dy}{2xy} = \\dfrac{dz}{(x+y)z}"
= "\\dfrac{[zdx + zdy - (x+y)dz]}{[z(x\u00b2+y\u00b2)+2xyz- (x+y)\u00b2z]}"
= "\\dfrac{z(dx+dy) - (x+y)dz}{0}"
⇒z((dx+dy) - (x+y) )dz = 0
⇒z d(x+y) - (x+y)dz = 0
⇒(zd(x+y) - (x+y)dz) / z² = 0
⇒d((x+y) / z) = 0
⇒(x+y) / z = c₁
From first two ratios we get
"\\dfrac{dx}{x\u00b2+y\u00b2} = 2\\dfrac{dy}{4xy}"
⇒2(x²+y²) dy = 4xy dx
⇒2(x²+y²) dy - 4xy dx = 0
⇒2x² dy - 2y² dy + 4y² dy -4xy dx = 0
⇒2(x²-y²) dy - 2y(2xdx - 2ydy) = 0
⇒[(x²-y²) 2 dy - 2y d(x²-y²)]/(x²-y²)²
= 0/(x²-y²)
⇒d(2y / (x²-y²)) = 0
Integrating , we get
2y/(x²-y²) = c₂
∴ The solution is (x+y) / z = Φ(2y / (x²-y²))
Comments
Leave a comment