(x^2+y^2)p +2xyq=(x+y)z
The given equation is
The subsidiary equations are
=
=
⇒z((dx+dy) - (x+y) )dz = 0
⇒z d(x+y) - (x+y)dz = 0
⇒(zd(x+y) - (x+y)dz) / z² = 0
⇒d((x+y) / z) = 0
⇒(x+y) / z = c₁
From first two ratios we get
⇒2(x²+y²) dy = 4xy dx
⇒2(x²+y²) dy - 4xy dx = 0
⇒2x² dy - 2y² dy + 4y² dy -4xy dx = 0
⇒2(x²-y²) dy - 2y(2xdx - 2ydy) = 0
⇒[(x²-y²) 2 dy - 2y d(x²-y²)]/(x²-y²)²
= 0/(x²-y²)
⇒d(2y / (x²-y²)) = 0
Integrating , we get
2y/(x²-y²) = c₂
∴ The solution is (x+y) / z = Φ(2y / (x²-y²))
Comments