p 2 + p x + q = z p 2 + p x + q − z = 0 ⋅ ⋅ ⋅ ⋅ ( ∗ ) p^2 + px + q = z\\ p^2 + px + q -z =0 \cdot \cdot \cdot \cdot (*) p 2 + p x + q = z p 2 + p x + q − z = 0 ⋅ ⋅ ⋅ ⋅ ( ∗ )
Set
f ( p , q , x , y , z ) = p 2 + p x + q − z f p = 2 p + x f q = 1 f x = p f y = 0 f z = − 1 f(p,q,x,y,z) = p^2 + px + q -z \\ f_p = 2p + x \\ f_q = 1 \\ f_x = p \\ f_y = 0 \\ f_z = -1 f ( p , q , x , y , z ) = p 2 + p x + q − z f p = 2 p + x f q = 1 f x = p f y = 0 f z = − 1
The Chapit auxiliary equation are
d x − f p = d y − f q = d z − p f p − q f q = d p f x + p f z = d q f y + q f z \dfrac{dx}{-f_p} = \dfrac{dy}{-f_q}= \dfrac{dz}{-pf_p - qf_q} = \dfrac{dp}{f_x +pf_z} = \dfrac{dq}{f_y + qf_z} − f p d x = − f q d y = − p f p − q f q d z = f x + p f z d p = f y + q f z d q
d x − 2 p − x = d y − 1 = d z − 2 p 2 − p x − q = d p 0 = d q − q \dfrac{dx}{-2p-x} = \dfrac{dy}{-1}= \dfrac{dz}{-2p^2 -px -q} = \dfrac{dp}{0} = \dfrac{dq}{-q} − 2 p − x d x = − 1 d y = − 2 p 2 − p x − q d z = 0 d p = − q d q
d y = d q q q = a e y dy = \dfrac{dq}{q} \\ q = ae^y d y = q d q q = a e y where a is an arbitrary constant.
Substituting the value of q into (*) , we have
p 2 + p x + a e y − z = 0 p^2 +px + ae^y -z = 0 p 2 + p x + a e y − z = 0
p = − x ± x 2 − 4 ( a e y − z ) 2 p = \dfrac{-x \pm \sqrt{x^2 - 4(ae^y-z)}}{2} p = 2 − x ± x 2 − 4 ( a e y − z )
Taking positive sign only we have that
p = − x + x 2 − 4 ( a e y − z ) 2 p = \dfrac{-x + \sqrt{x^2 - 4(ae^y-z)}}{2} p = 2 − x + x 2 − 4 ( a e y − z )
Substituting the value of p and q into
d z = p d x + q d y dz = pdx + qdy d z = p d x + q d y
We have
d z = ( − x + x 2 − 4 ( a e y − z ) 2 ) d x + a e y d y dz = \bigg( \dfrac{-x + \sqrt{x^2 - 4(ae^y-z)}}{2} \bigg)dx + ae^ydy d z = ( 2 − x + x 2 − 4 ( a e y − z ) ) d x + a e y d y
By integrating, we have
z = − x 2 4 + x 4 x 2 − 4 ( a e y − z ) + ( z − a e y ) l n ∣ x + x 2 − 4 ( a e y − z ) ∣ + a e y + b z = \dfrac{-x^2}{4} + \dfrac{ x}{4}\sqrt{x^2 - 4(ae^y-z)} + (z-ae^y)ln\mid x + \sqrt{x^2 - 4(ae^y-z) }\mid + ae^y + b z = 4 − x 2 + 4 x x 2 − 4 ( a e y − z ) + ( z − a e y ) l n ∣ x + x 2 − 4 ( a e y − z ) ∣ + a e y + b
where b is an arbitrary constant
Comments