Question #168833

P^2+px+q=z


1
Expert's answer
2021-03-08T18:47:48-0500

p2+px+q=zp2+px+qz=0()p^2 + px + q = z\\ p^2 + px + q -z =0 \cdot \cdot \cdot \cdot (*)

Set

f(p,q,x,y,z)=p2+px+qzfp=2p+xfq=1fx=pfy=0fz=1f(p,q,x,y,z) = p^2 + px + q -z \\ f_p = 2p + x \\ f_q = 1 \\ f_x = p \\ f_y = 0 \\ f_z = -1

The Chapit auxiliary equation are

dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfz\dfrac{dx}{-f_p} = \dfrac{dy}{-f_q}= \dfrac{dz}{-pf_p - qf_q} = \dfrac{dp}{f_x +pf_z} = \dfrac{dq}{f_y + qf_z}

dx2px=dy1=dz2p2pxq=dp0=dqq\dfrac{dx}{-2p-x} = \dfrac{dy}{-1}= \dfrac{dz}{-2p^2 -px -q} = \dfrac{dp}{0} = \dfrac{dq}{-q}

dy=dqqq=aeydy = \dfrac{dq}{q} \\ q = ae^y where a is an arbitrary constant.

Substituting the value of q into (*) , we have

p2+px+aeyz=0p^2 +px + ae^y -z = 0

p=x±x24(aeyz)2p = \dfrac{-x \pm \sqrt{x^2 - 4(ae^y-z)}}{2}

Taking positive sign only we have that

p=x+x24(aeyz)2p = \dfrac{-x + \sqrt{x^2 - 4(ae^y-z)}}{2}

Substituting the value of p and q into

dz=pdx+qdydz = pdx + qdy

We have

dz=(x+x24(aeyz)2)dx+aeydydz = \bigg( \dfrac{-x + \sqrt{x^2 - 4(ae^y-z)}}{2} \bigg)dx + ae^ydy

By integrating, we have

z=x24+x4x24(aeyz)+(zaey)lnx+x24(aeyz)+aey+bz = \dfrac{-x^2}{4} + \dfrac{ x}{4}\sqrt{x^2 - 4(ae^y-z)} + (z-ae^y)ln\mid x + \sqrt{x^2 - 4(ae^y-z) }\mid + ae^y + b

where b is an arbitrary constant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS