p2+px+q=zp2+px+q−z=0⋅⋅⋅⋅(∗)
Set
f(p,q,x,y,z)=p2+px+q−zfp=2p+xfq=1fx=pfy=0fz=−1
The Chapit auxiliary equation are
−fpdx=−fqdy=−pfp−qfqdz=fx+pfzdp=fy+qfzdq
−2p−xdx=−1dy=−2p2−px−qdz=0dp=−qdq
dy=qdqq=aey where a is an arbitrary constant.
Substituting the value of q into (*) , we have
p2+px+aey−z=0
p=2−x±x2−4(aey−z)
Taking positive sign only we have that
p=2−x+x2−4(aey−z)
Substituting the value of p and q into
dz=pdx+qdy
We have
dz=(2−x+x2−4(aey−z))dx+aeydy
By integrating, we have
z=4−x2+4xx2−4(aey−z)+(z−aey)ln∣x+x2−4(aey−z)∣+aey+b
where b is an arbitrary constant
Comments