Given the partial differential equation:
yp+xq+pq=0
The given equation can be written like:
yp+xq=–pq⟹qy+px=−1
OR
(qy)=(−1−px)=a(say)
which belong to the category f1(x,p)=f2(y,q) where:
qy=a⟹q=ay;and−1−px=a⟹p=(−1−ax)
for z(x,y):
dz=∂x∂zdx+∂y∂zdy
dz=(−1−ax)dx+aydy Integrating through, we have:
z=2(−1−a)x2+2ay2+c⟹2z=−(−1−a)x2+ay2+b where b=2c
Comments