Question #169003

(1-x^2)yp^2+x^2q=0


1
Expert's answer
2021-03-07T16:50:52-0500
(1x2)yp2+x2q=0(1x2)yp2p2q+x2qp2q=0p2q(1x2)yq+x2p2=0(x21)yq+x2p2=0x2p2=(x21)yq=a(say)(1-x^2)yp^2+x^2q=0\\ \frac{(1-x^2)yp^2}{p^2q}+\frac{x^2q}{p^2q}=\frac{0}{p^2q}\\ \frac{(1-x^2)y}{q}+\frac{x^2}{p^2}=0\\ -\frac{(x^2-1)y}{q}+\frac{x^2}{p^2}=0\\ \frac{x^2}{p^2}=\frac{(x^2-1)y}{q}=a \qquad \text{(say)}\\

Then:


(x21)yq=a    q=(x21)yax2p2=a    p=xa\frac{(x^2-1)y}{q}=a \implies q= \frac{(x^2-1)y}{a}\\ \frac{x^2}{p^2}=a \implies p = \frac{x}{\sqrt{a}}

Since


dz=zxdx+zydydz = \dfrac{\partial z}{\partial x}dx + \dfrac{\partial z}{\partial y}dy

Therefore,


dz=xadx+(x21)yadydz = \frac{x}{\sqrt{a}}dx+\frac{(x^2-1)y}{a}dy

Integrating through:


z=x22a+(x21)y22a+c2z=x2a+(x21)y2a+kz = \frac{x^2}{2\sqrt{a}}+\frac{(x^2-1)y^2}{2a}+c\\ \therefore 2z = \frac{x^2}{\sqrt{a}}+\frac{(x^2-1)y^2}{a}+k\\

where k=2ck = 2c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS