ydy=4x(y^2+1)^1/2 dx y(0)=1
"ydy = 4x{\\left( {{y^2} + 1} \\right)^{\\frac{1}{2}}}dx,\\,\\,\\,y(0) = 1"
"\\frac{{ydy}}{{{{\\left( {{y^2} + 1} \\right)}^{\\frac{1}{2}}}}} = 4xdx"
"\\frac{1}{2}\\frac{{d\\left( {{y^2} + 1} \\right)}}{{{{\\left( {{y^2} + 1} \\right)}^{\\frac{1}{2}}}}} = 4xdx"
"\\sqrt {{y^2} + 1} = 2{x^2} + C"
"\\sqrt {{y^2} + 1} - 2{x^2} = C"
"y(0) = 1 \\Rightarrow \\sqrt {{1^2} + 1} - 0 = C \\Rightarrow C = \\sqrt 2"
Answer: "\\sqrt {{y^2} + 1} - 2{x^2} = \\sqrt 2"
Comments
Leave a comment