ydy=4x(y^2+1)^1/2 dx y(0)=1
ydy=4x(y2+1)12dx, y(0)=1ydy = 4x{\left( {{y^2} + 1} \right)^{\frac{1}{2}}}dx,\,\,\,y(0) = 1ydy=4x(y2+1)21dx,y(0)=1
ydy(y2+1)12=4xdx\frac{{ydy}}{{{{\left( {{y^2} + 1} \right)}^{\frac{1}{2}}}}} = 4xdx(y2+1)21ydy=4xdx
12d(y2+1)(y2+1)12=4xdx\frac{1}{2}\frac{{d\left( {{y^2} + 1} \right)}}{{{{\left( {{y^2} + 1} \right)}^{\frac{1}{2}}}}} = 4xdx21(y2+1)21d(y2+1)=4xdx
y2+1=2x2+C\sqrt {{y^2} + 1} = 2{x^2} + Cy2+1=2x2+C
y2+1−2x2=C\sqrt {{y^2} + 1} - 2{x^2} = Cy2+1−2x2=C
y(0)=1⇒12+1−0=C⇒C=2y(0) = 1 \Rightarrow \sqrt {{1^2} + 1} - 0 = C \Rightarrow C = \sqrt 2y(0)=1⇒12+1−0=C⇒C=2
Answer: y2+1−2x2=2\sqrt {{y^2} + 1} - 2{x^2} = \sqrt 2y2+1−2x2=2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments