Question #168868

ydy=4x(y^2+1)^1/2 dx y(0)=1


1
Expert's answer
2021-03-05T07:26:39-0500

ydy=4x(y2+1)12dx,y(0)=1ydy = 4x{\left( {{y^2} + 1} \right)^{\frac{1}{2}}}dx,\,\,\,y(0) = 1


ydy(y2+1)12=4xdx\frac{{ydy}}{{{{\left( {{y^2} + 1} \right)}^{\frac{1}{2}}}}} = 4xdx


12d(y2+1)(y2+1)12=4xdx\frac{1}{2}\frac{{d\left( {{y^2} + 1} \right)}}{{{{\left( {{y^2} + 1} \right)}^{\frac{1}{2}}}}} = 4xdx


y2+1=2x2+C\sqrt {{y^2} + 1} = 2{x^2} + C


y2+12x2=C\sqrt {{y^2} + 1} - 2{x^2} = C


y(0)=112+10=CC=2y(0) = 1 \Rightarrow \sqrt {{1^2} + 1} - 0 = C \Rightarrow C = \sqrt 2


Answer: y2+12x2=2\sqrt {{y^2} + 1} - 2{x^2} = \sqrt 2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS