Question #169004

yp+x^2q^2=2x^2y


1
Expert's answer
2021-03-10T11:39:00-0500
yp+x2q2=2x2yyp2x2y+x2q22x2y=2x2y2x2yp2x2+q22y=1q22y=1p2x2=a(say)q22y=a    q=2ayand 1p2x2=a    p=2x2(1a)yp+x^2q^2=2x^2y\\ \frac{yp}{2x^2y}+\frac{x^2q^2}{2x^2y} =\frac{2x^2y}{2x^2y}\\ \frac{p}{2x^2}+\frac{q^2}{2y} =1\\ \frac{q^2}{2y} =1-\frac{p}{2x^2}=a \qquad \text{(say)}\\ \therefore \qquad \frac{q^2}{2y}=a \implies q = \sqrt{2ay}\\ \text{and } \qquad 1-\frac{p}{2x^2}=a \implies p =2x^2(1-a)

Since:


dz=zxdx+zydydz = \dfrac{\partial z}{\partial x}dx + \dfrac{\partial z}{\partial y}dy

Then:


dz=2x2(1a)  dx+2ay  dydz = 2x^2(1-a)\;dx + \sqrt{2ay}\;dy\\

Integrating through:


dz=2x2(1a)  dx+2ay  dyz=2x3(1a)3+8ay33+c3z=2x3(1a)+8ay3+b\int dz = \int 2x^2(1-a)\;dx + \int \sqrt{2ay}\;dy\\ z = \frac{2x^3(1-a)}{3} + \frac{\sqrt{8ay^3}}{3}+c\\ 3z = 2x^3(1-a) + \sqrt{8ay^3} + b\\

where b=3c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS