Question #169939

Determine the steady-state temperature u(x,y) in a rectangular plate A(0,0), B(0,6), C(10,6), D(10,0) if the temperature along AB, BC, and AD are maintained at zero while edge CD is at temperature 80. Note that the flat faces are insulated.


1
Expert's answer
2021-03-10T12:24:42-0500

Let u (x,y) be the temperature at any point x,y of the plate.


Also u (x,y) satisfies the equation


d2udx2+d2udy2=0     (1)\dfrac{d^2u}{dx^2}+\dfrac{d^2u}{dy^2}=0~~~~~-(1)


Let the solution of the equation be-


u(x,y)=(Acosλx+Bsinλx)(Ceλy+Deλy)    (2)u(x,y)=(Acos\lambda x+Bsin\lambda x )(Ce^{\lambda y}+De^{-\lambda y})~~~~-(2)



The boundry condition are-

(i)u(0,y)=0 for 0<y<(ii)u(8,y)=0 for 0<y<(iii)(x,)=80 for 0<x<10(iv)u(x,0)=f(x) for 0<x<l(i) u(0,y)=0 \text { for } 0<y<\infty\\ (ii) u(8,y)=0 \text{ for } 0<y<\infty\\ (iii) (x,\infty)=80 \text{ for } 0<x<10\\ (iv) u(x,0)=f(x) \text{ for } 0<x<l\\


Using condition 1 we get-


A=0,λ=nπ8A=0, \lambda=\dfrac{n\pi}{8}


u(x,y)=B[Cenπx8+Denπx8]u(x,y)=B[Ce^{\dfrac{n\pi x}{8}}+De^{-\dfrac{n\pi x}{8}}]


The most general solution is-


u(x,y)=n=1(Bnenπx8+Dnenπx8]    (3)u(x,y)=\sum_{n=1}^{\infty}(B_ne^{\dfrac{n\pi x}{8}}+D_ne^{-\dfrac{n\pi x}{8}}]~~~~-(3)


Using condition (iii) we get BnB_n =0 and Dn=80D_n=80



Hence , u(x,y)=80n=1enπx8]u(x,y)=80\sum_{n=1}^{\infty}e^{-\dfrac{n\pi x}{8}}]


Using condition (iv) we get


f(x)=80n=1enπx8f(x)=80\sum_{n=1}^{\infty}e^{-\dfrac{n\pi x}{8}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS