Let u (x,y) be the temperature at any point x,y of the plate.
Also u (x,y) satisfies the equation
dx2d2u+dy2d2u=0 −(1)
Let the solution of the equation be-
u(x,y)=(Acosλx+Bsinλx)(Ceλy+De−λy) −(2)
The boundry condition are-
(i)u(0,y)=0 for 0<y<∞(ii)u(8,y)=0 for 0<y<∞(iii)(x,∞)=80 for 0<x<10(iv)u(x,0)=f(x) for 0<x<l
Using condition 1 we get-
A=0,λ=8nπ
u(x,y)=B[Ce8nπx+De−8nπx]
The most general solution is-
u(x,y)=∑n=1∞(Bne8nπx+Dne−8nπx] −(3)
Using condition (iii) we get Bn =0 and Dn=80
Hence , u(x,y)=80∑n=1∞e−8nπx]
Using condition (iv) we get
f(x)=80∑n=1∞e−8nπx
Comments