z=px+qy+3(pq)^1/3
"z = px + qy +3(pq)^{\\frac{1}{3}}\\\\ f(x,y,z,p,q) = px + qy +3(pq)^{\\frac{1}{3}} - z = 0 \\\\ f_x = p \\\\ f_y = q \\\\ f_z = -1\\\\ f_p = x + p^{-\\frac{2}{3}} q^{\\frac{1}{3}} \\\\ f_q = y + p^{\\frac{1}{3}} q^{-\\frac{2}{3}} \\\\"
"\\dfrac{dx}{-f_p} = \\dfrac{dy}{-f_q} = \\dfrac{dz}{-pf_p -qf_q} = \\dfrac{dp}{f_x +pf_z} = \\dfrac{dq}{f_y + qf_z}"
"\\dfrac{dx}{-x - p^{-\\frac{2}{3}} q^{\\frac{1}{3}}} = \\dfrac{dy}{- y -p^{\\frac{1}{3}} q^{-\\frac{2}{3}}} = \\dfrac{dz}{-xp-yq-2(pq)^\\frac{1}{3}} = \\dfrac{dp}{0} = \\dfrac{dq}{0}"
By integrating, we have p= a, q = b ; where a and b are arbitrary constants.
So, "z = ax + by +3(ab)^{\\frac{1}{3}}"
Comments
Leave a comment