Question #170018

z=px+qy+3(pq)^1/3


1
Expert's answer
2021-03-09T07:19:31-0500

z=px+qy+3(pq)13f(x,y,z,p,q)=px+qy+3(pq)13z=0fx=pfy=qfz=1fp=x+p23q13fq=y+p13q23z = px + qy +3(pq)^{\frac{1}{3}}\\ f(x,y,z,p,q) = px + qy +3(pq)^{\frac{1}{3}} - z = 0 \\ f_x = p \\ f_y = q \\ f_z = -1\\ f_p = x + p^{-\frac{2}{3}} q^{\frac{1}{3}} \\ f_q = y + p^{\frac{1}{3}} q^{-\frac{2}{3}} \\


dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfz\dfrac{dx}{-f_p} = \dfrac{dy}{-f_q} = \dfrac{dz}{-pf_p -qf_q} = \dfrac{dp}{f_x +pf_z} = \dfrac{dq}{f_y + qf_z}


dxxp23q13=dyyp13q23=dzxpyq2(pq)13=dp0=dq0\dfrac{dx}{-x - p^{-\frac{2}{3}} q^{\frac{1}{3}}} = \dfrac{dy}{- y -p^{\frac{1}{3}} q^{-\frac{2}{3}}} = \dfrac{dz}{-xp-yq-2(pq)^\frac{1}{3}} = \dfrac{dp}{0} = \dfrac{dq}{0}


By integrating, we have p= a, q = b ; where a and b are arbitrary constants.

So, z=ax+by+3(ab)13z = ax + by +3(ab)^{\frac{1}{3}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS