z=px+qy+3(pq)31f(x,y,z,p,q)=px+qy+3(pq)31−z=0fx=pfy=qfz=−1fp=x+p−32q31fq=y+p31q−32
−fpdx=−fqdy=−pfp−qfqdz=fx+pfzdp=fy+qfzdq
−x−p−32q31dx=−y−p31q−32dy=−xp−yq−2(pq)31dz=0dp=0dq
By integrating, we have p= a, q = b ; where a and b are arbitrary constants.
So, z=ax+by+3(ab)31
Comments