Question #170016

yp+x^2q^2=2x^2y


1
Expert's answer
2021-03-09T07:18:06-0500

yp+x2q2=2x2yf(x,y,z,p,q)=yp+x2q22x2y=0()fx=2xq24xyfy=p2x2fz=0fp=yfq=2x2qyp + x^2q^2 = 2x^2y\\ f(x,y,z,p,q) = yp + x^2q^2 - 2x^2y = 0 \cdot \cdot \cdot (*) \\ f_x = 2xq^2 - 4xy\\ f_y = p- 2x^2\\ f_z = 0 \\ f_p = y \\ f_q = 2x^2q


dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfz\dfrac{dx}{-f_p}= \dfrac{dy}{-f_q} = \dfrac{dz}{-pf_p-qf_q} = \dfrac{dp}{f_x + pf_z} = \dfrac{dq}{f_y + qf_z}


dxy=dy2x2q=dzyp2x2q2=dp2xq24xy=dqp2x2\dfrac{dx}{-y}= \dfrac{dy}{-2x^2q} = \dfrac{dz}{-yp-2x^2q^2} = \dfrac{dp}{2xq^2-4xy} = \dfrac{dq}{p-2x^2}


dxy=dy2x2qydy=2x2qdxq=34x3(y2+c)\dfrac{dx}{-y}= \dfrac{dy}{-2x^2q} \\ ydy = 2x^2qdx \\ q= \frac{3}{4}x^{-3}(y^2 + c)


Substituting into (*), we have

yp+x2[34x3(y2+c)]22x2y=0yp=2x2y916x4(y2+c)2p=2x2916x4y1(y2+c)2yp + x^2 \bigg[\frac{3}{4}x^{-3}(y^2 + c) \bigg]^2 - 2x^2y = 0 \\ yp = 2x^2y - \frac{9}{16}x^{-4}(y^2 +c)^2 \\ p = 2x^2 - \frac{9}{16}x^{-4}y^{-1}(y^2 +c)^2

Substituting the value of p and q into dz = pdx +qdy , we have

dz=[2x2916x4y1(y2+c)2]dx+[34x3(y2+c)]dydz = \bigg[2x^2 - \frac{9}{16}x^{-4}y^{-1}(y^2 +c)^2 \bigg] dx + \bigg[\frac{3}{4}x^{-3}(y^2 + c) \bigg]dy


z=23x3+316x3y1(y2+c)2+34x3(13y3+cy)+dz = \frac{2}{3}x^3+ \frac{3}{16}x^{-3}y^{-1}(y^2 +c)^2 + \frac{3}{4}x^{-3}(\frac{1}{3}y^3 + cy)+ d



where c and d are arbitrary constant



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS