yp+x2q2=2x2yf(x,y,z,p,q)=yp+x2q2−2x2y=0⋅⋅⋅(∗)fx=2xq2−4xyfy=p−2x2fz=0fp=yfq=2x2q
−fpdx=−fqdy=−pfp−qfqdz=fx+pfzdp=fy+qfzdq
−ydx=−2x2qdy=−yp−2x2q2dz=2xq2−4xydp=p−2x2dq
−ydx=−2x2qdyydy=2x2qdxq=43x−3(y2+c)
Substituting into (*), we have
yp+x2[43x−3(y2+c)]2−2x2y=0yp=2x2y−169x−4(y2+c)2p=2x2−169x−4y−1(y2+c)2
Substituting the value of p and q into dz = pdx +qdy , we have
dz=[2x2−169x−4y−1(y2+c)2]dx+[43x−3(y2+c)]dy
z=32x3+163x−3y−1(y2+c)2+43x−3(31y3+cy)+d
where c and d are arbitrary constant
Comments