ysin2xdx=(1+y^2+cos^2x)dy
The general form of this equation: Pdx + Qdy = 0, where P = y sin2x, Q = - (1 + y^2 + cos^2x)
Let's check if exists smooth enough function u(x, y) such that: du = Pdx + Qdy
"\\frac{dP}{dy} = sin2x" and "\\frac{dQ}{dx} = sin2x" are equal, so we can state that such function exists.
"u = \\int Pdx + f(y) = y\\int sin2xdx + f(y) = \n-\\frac12\\cdot y\\cdot cos2x + f(y)"
"=> \\frac{du}{dy} = -\\frac12\\cdot cos2x + f'(y) = Q = - 1- y^2 - cos^2x"
"=> -cos^2x + \\frac12 + f'(y) = -1 - y^2 - cos^2x => f'(y) = -\\frac32 - y^2"
"=> Integrating: f(y) = -\\frac{3y}{2} - \\frac{y^3}{3} + C"
"=> u = -\\frac12\\cdot y\\cdot cos2x - \\frac{3y}{2} - \\frac{y^3}{2} + C"
So, answer is this equation: "-\\frac12\\cdot y\\cdot cos2x - \\frac{3y}{2} - \\frac{y^3}{2} + C = 0"
Comments
Leave a comment