The general form of this equation: Pdx + Qdy = 0, where P = y sin2x, Q = - (1 + y^2 + cos^2x)
Let's check if exists smooth enough function u(x, y) such that: du = Pdx + Qdy
dydP=sin2x and dxdQ=sin2x are equal, so we can state that such function exists.
u=∫Pdx+f(y)=y∫sin2xdx+f(y)=−21⋅y⋅cos2x+f(y)
=>dydu=−21⋅cos2x+f′(y)=Q=−1−y2−cos2x
=>−cos2x+21+f′(y)=−1−y2−cos2x=>f′(y)=−23−y2
=>Integrating:f(y)=−23y−3y3+C
=>u=−21⋅y⋅cos2x−23y−2y3+C
So, answer is this equation: −21⋅y⋅cos2x−23y−2y3+C=0
Comments