Question #160990

2y' =3y+1 ; y(1) = 0 .


1
Expert's answer
2021-02-04T14:20:52-0500

2y' =3y+1 ; y(1) = 0 .


2dydx=3y+12{dy \over dx} = 3y +1


2(3y+1)dy=dx\int{2 \over (3y +1)}dy=\int dx


21(3y+1)dy=dx2\int{1 \over (3y +1)}dy=\int dx


23ln(3y+1)=x+c{2 \over 3} ln(3y +1)= x + c


ln(3y+1)=32x+cln(3y +1)={3 \over 2}x+c


3y+1=e32x+c3y +1= e^{{3 \over 2}x + c}


3y+1=e32x.ec3y + 1= e^{{3 \over 2}x}. e^c


ec=Ae^c= A


3y+1=Ae32x3y + 1=A e^{{3 \over 2}x}


where A and c are constants


the initial conditionw given are y(0)=1


3(0)+1=Ae323(0) +`1=Ae^{{3 \over 2}}


A=1e32=0.22A={1 \over e^{{3 \over 2}}}= 0.22




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS