2y' =3y+1 ; y(1) = 0 .
2y' =3y+1 ; y(1) = 0 .
"2{dy \\over dx} = 3y +1"
"\\int{2 \\over (3y +1)}dy=\\int dx"
"2\\int{1 \\over (3y +1)}dy=\\int dx"
"{2 \\over 3} ln(3y +1)= x + c"
"ln(3y +1)={3 \\over 2}x+c"
"3y +1= e^{{3 \\over 2}x + c}"
"3y + 1= e^{{3 \\over 2}x}. e^c"
"e^c= A"
"3y + 1=A e^{{3 \\over 2}x}"
where A and c are constants
the initial conditionw given are y(0)=1
"3(0) +`1=Ae^{{3 \\over 2}}"
"A={1 \\over e^{{3 \\over 2}}}= 0.22"
Comments
Leave a comment