2y' =3y+1 ; y(1) = 0 .
2dydx=3y+12{dy \over dx} = 3y +12dxdy=3y+1
∫2(3y+1)dy=∫dx\int{2 \over (3y +1)}dy=\int dx∫(3y+1)2dy=∫dx
2∫1(3y+1)dy=∫dx2\int{1 \over (3y +1)}dy=\int dx2∫(3y+1)1dy=∫dx
23ln(3y+1)=x+c{2 \over 3} ln(3y +1)= x + c32ln(3y+1)=x+c
ln(3y+1)=32x+cln(3y +1)={3 \over 2}x+cln(3y+1)=23x+c
3y+1=e32x+c3y +1= e^{{3 \over 2}x + c}3y+1=e23x+c
3y+1=e32x.ec3y + 1= e^{{3 \over 2}x}. e^c3y+1=e23x.ec
ec=Ae^c= Aec=A
3y+1=Ae32x3y + 1=A e^{{3 \over 2}x}3y+1=Ae23x
where A and c are constants
the initial conditionw given are y(0)=1
3(0)+‘1=Ae323(0) +`1=Ae^{{3 \over 2}}3(0)+‘1=Ae23
A=1e32=0.22A={1 \over e^{{3 \over 2}}}= 0.22A=e231=0.22
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments