ut -kuxx = F(x, t) 0<x<l t>0
u(x, 0)= f(x) for 0<x<l and u(0, t)= u(l, t)= 0 for t >0
CORRECTED SOLUTION
We seek the solution of the form of the functions that are solutions for the homogenous equation:
"u(t,x)=\\sum\\limits_{n=1}^{+\\infty}u_n(t)\\sin\\frac{\\pi n}{l}x"
Then
"u_t = \\sum\\limits_{n=1}^{+\\infty}u'_n(t)\\sin\\frac{\\pi n}{l}x"
"u_{xx}=-\\sum\\limits_{n=1}^{+\\infty}(\\frac{\\pi n}{l})^2 u_n(t)\\sin\\frac{\\pi n}{l}x"
"u_t-ku_{xx} = \\sum\\limits_{n=1}^{+\\infty}(u'_n(t)+k(\\frac{\\pi n}{l})^2 u_n(t))\\sin\\frac{\\pi n}{l}x"
Let "F(t,x)=\\sum\\limits_{n=1}^{+\\infty}F_n(t)\\sin\\frac{\\pi n}{l}x" (a Fourier series for the function F(t,x) on the interval "0\\leq x\\leq l" )
then "f_n(t)=\\frac{2}{l}\\int\\limits_0^l F(t,x)\\sin\\frac{\\pi n}{l}x\\, dx"
Substituting this to the equation "u_t-ku_{xx}=F(t,x)" we have:
"\\sum\\limits_{n=1}^{+\\infty}(u'_n(t)+k(\\frac{\\pi n}{l})^2 u_n(t)-F_n(t))\\sin\\frac{\\pi n}{l}x=0"
At the left side there is a Fourier series for the zero function, hence, all the Fourier coefficients are zeros, that is,
"u'_n(t)+k(\\frac{\\pi n}{l})^2u_n(t)=F_n(t)"
The solution of the homogeneous equation (with "F_n(t)=0" ) is
"u_n(t)=c_ne^{-k(\\pi n\/l)^2t}"
To solve the non-homogeneous equation we are varying the constant cn .
"u_n(t)=c_n(t)e^{-k(\\pi n\/l)^2t}"
We have the equation (ODE) for cn(t):
"c'_n(t)e^{-k(\\pi n\/l)^2t} = F_n(t)"
To find the initial conditions we consider the function
"f(x) = u(0,x) =\\sum\\limits_{n=1}^{+\\infty}u_n(0)\\sin\\frac{\\pi n}{l}x=\\sum\\limits_{n=1}^{+\\infty}c_n(0)\\sin\\frac{\\pi n}{l}x"
Therefore, "c_n(0)=\\frac{2}{l}\\int\\limits_0^l f(x)\\sin\\frac{\\pi n}{l}x\\, dx" - Fourier coefficients for the function "f(x)" .
Integrating ODE we have
"c_n(t)=c_n(0)+\\int\\limits_0^t F_n(s)e^{ks(\\pi n\/l)^2}ds"
Answer. "u(t,x)=\\sum\\limits_{n=1}^{+\\infty}c_n(t)e^{-k(\\pi n\/l)^2t}\\sin\\frac{\\pi n}{l}x"
with
"c_n(t)=c_n(0)+\\int\\limits_0^t F_n(s)e^{ks(\\pi n\/l)^2}ds"
"F_n(t)=\\frac{2}{l}\\int\\limits_0^l F(t,x)\\sin\\frac{\\pi n}{l}x\\, dx"
"c_n(0)=\\frac{2}{l}\\int\\limits_0^l f(x)\\sin\\frac{\\pi n}{l}x\\, dx"
Comments
Leave a comment