Question #160923

1/(xy²+y⁴) is an integrating factor for the differential equation (x²y+y²)dx+(y³-x³)dy=0. Is it true or false. Give reasons for your answer


1
Expert's answer
2021-02-09T08:52:25-0500

It is not an integrating factor(x2y+y2)dx+(y3x3)dy=0dydx+(x2+y)yy3x3=0ddx(yxy2+y4)dydx+(x2+y)yy3x3Or(x2y+y2)dx+(y3x3)dy=0y(x2dx+y2dy)+y2dxx3dy=0Multiply both sides by1xy2+y4xdx+y2dyy(x+y2)+y2dxx3dyy2(x+y2)=0d(x22+y33)y(x+y2)+y2dxx3dyy2(x+y2)=0This cannot be simplified furtherto obtain a solution of the ODETherefore1xy2+y4is not an integrating factor\displaystyle \textsf{It is not an integrating factor}\\ (x^2 y + y^2)\mathrm{d}x + (y^3 - x^3) \mathrm{d}y = 0\\ \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{(x^2 + y)y}{y^3 - x^3} = 0\\ \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{y}{xy^2 + y^4}\right) \neq \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{(x^2 + y)y}{y^3 - x^3} \\ \textsf{Or}\\ (x^2 y + y^2)\mathrm{d}x + (y^3 - x^3) \mathrm{d}y = 0\\ y(x^2\mathrm{d}x + y^2\mathrm{d}y) + y^2\mathrm{d}x - x^3\mathrm{d}y = 0\\ \textsf{Multiply both sides by}\,\, \frac{1}{xy^2 + y^4} \\ \frac{x\mathrm{d}x + y^2\mathrm{d}y}{y(x + y^2)} + \frac{y^2\mathrm{d}x - x^3\mathrm{d}y}{y^2(x + y^2)} = 0\\ \frac{\mathrm{d}\left(\frac{x^2}{2} + \frac{y^3}{3}\right)}{y(x + y^2)} + \frac{y^2\mathrm{d}x - x^3\mathrm{d}y}{y^2(x + y^2)} = 0\\ \textsf{This cannot be simplified further}\\ \textsf{to obtain a solution of the ODE}\\ \textsf{Therefore}\,\, \frac{1}{xy^2 + y^4}\,\,\textsf{is not an integrating factor}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS