y"'+3y"+3y'+y=(x+40)e-x
Let x=t
Let the general solution be
y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) + y p ( t ) y(t) =c_1y_1(t) +c_2y_2(t)+ c_3y_3(t)+y_p(t) y ( t ) = c 1 y 1 ( t ) + c 2 y 2 ( t ) + c 3 y 3 ( t ) + y p ( t )
y1 , y2 , y3-are the solutions of the homogeneous equation. These solutions may be obtained by the characteristic equation
λ 3 + 3 λ 2 + 3 λ + 1 = 0 \lambda^3+3\lambda^2+3\lambda+1=0 λ 3 + 3 λ 2 + 3 λ + 1 = 0
( λ + 1 ) 3 = 0 (\lambda+1)^3=0 ( λ + 1 ) 3 = 0
λ 1 = λ 2 = λ 3 = − 1 \lambda_1=\lambda_2=\lambda_3=-1 λ 1 = λ 2 = λ 3 = − 1
y 1 = y 2 = y 3 = e − t y_1=y_2=y_3=e^{-t} y 1 = y 2 = y 3 = e − t
Wronskian test for independence.
Let us calculate the Wronskian:
W = d e t ( y 1 y 2 y 3 y 1 ′ y 2 ′ y 3 ′ y 1 ′ ′ y 2 ′ ′ y 3 ′ ′ ) = d e t ( e − t e − t e − t − e − t − e − t − e − t e − t e − t e − t ) = 3 e − t ( − e − 2 t + e − 2 t ) = 0 W=det\begin{pmatrix}
y_1 & y_2 & y_3 \\
y_1' & y_2' & y_3' \\
y_1'' & y_2'' & y_3''
\end{pmatrix}=det\begin{pmatrix}
e^{-t} & e^{-t} & e^{-t} \\
-e^{-t} & -e^{-t} & -e^{-t} \\
e^{-t} & e^{-t} & e^{-t}
\end{pmatrix}=3e^{-t}(-e^{-2t}+e^{-2t})=0 W = d e t ⎝ ⎛ y 1 y 1 ′ y 1 ′′ y 2 y 2 ′ y 2 ′′ y 3 y 3 ′ y 3 ′′ ⎠ ⎞ = d e t ⎝ ⎛ e − t − e − t e − t e − t − e − t e − t e − t − e − t e − t ⎠ ⎞ = 3 e − t ( − e − 2 t + e − 2 t ) = 0
W=0, so y1, y2, y3 are dependent. So
y p ( t ) = f ( t ) = ( x + 40 ) e − t y_p(t)=f(t)=(x+40)e^{-t} y p ( t ) = f ( t ) = ( x + 40 ) e − t
Answer: y(x)=3ce-x +(x+40)e-x =e-x (3c+x+40)
Comments