y"'+3y"+3y'+y=(x+40)e-x
Let x=t
Let the general solution be
y(t)=c1y1(t)+c2y2(t)+c3y3(t)+yp(t)
y1, y2 , y3-are the solutions of the homogeneous equation. These solutions may be obtained by the characteristic equation
λ3+3λ2+3λ+1=0
(λ+1)3=0
λ1=λ2=λ3=−1
y1=y2=y3=e−t
Wronskian test for independence.
Let us calculate the Wronskian:
W=det⎝⎛y1y1′y1′′y2y2′y2′′y3y3′y3′′⎠⎞=det⎝⎛e−t−e−te−te−t−e−te−te−t−e−te−t⎠⎞=3e−t(−e−2t+e−2t)=0
W=0, so y1, y2,y3 are dependent. So
yp(t)=f(t)=(x+40)e−t
Answer: y(x)=3ce-x+(x+40)e-x=e-x(3c+x+40)
Comments