Solve the following equations using Wronskian’s method d³y/dx³+3d²y/dx²+3dy/dx+y=(x+40)e^-x
y"'+3y"+3y'+y=(x+40)e-x
Let x=t
Let the general solution be
"y(t) =c_1y_1(t) +c_2y_2(t)+ c_3y_3(t)+y_p(t)"
y1, y2 , y3-are the solutions of the homogeneous equation. These solutions may be obtained by the characteristic equation
"\\lambda^3+3\\lambda^2+3\\lambda+1=0"
"(\\lambda+1)^3=0"
"\\lambda_1=\\lambda_2=\\lambda_3=-1"
"y_1=y_2=y_3=e^{-t}"
Wronskian test for independence.
Let us calculate the Wronskian:
"W=det\\begin{pmatrix}\n y_1 & y_2 & y_3 \\\\\n y_1' & y_2' & y_3' \\\\\ny_1'' & y_2'' & y_3''\n\\end{pmatrix}=det\\begin{pmatrix}\n e^{-t} & e^{-t} & e^{-t} \\\\\n -e^{-t} & -e^{-t} & -e^{-t} \\\\\ne^{-t} & e^{-t} & e^{-t} \n\\end{pmatrix}=3e^{-t}(-e^{-2t}+e^{-2t})=0"
W=0, so y1, y2,y3 are dependent. So
"y_p(t)=f(t)=(x+40)e^{-t}"
Answer: y(x)=3ce-x+(x+40)e-x=e-x(3c+x+40)
Comments
Leave a comment