Question #160353

Solve the following equations using Wronskian’s method d³y/dx³+3d²y/dx²+3dy/dx+y=(x+40)e^-x


1
Expert's answer
2021-02-24T07:07:45-0500

y"'+3y"+3y'+y=(x+40)e-x

Let x=t

Let the general solution be

y(t)=c1y1(t)+c2y2(t)+c3y3(t)+yp(t)y(t) =c_1y_1(t) +c_2y_2(t)+ c_3y_3(t)+y_p(t)


y1, y2 , y3-are the solutions of the homogeneous equation. These solutions may be obtained by the characteristic equation

λ3+3λ2+3λ+1=0\lambda^3+3\lambda^2+3\lambda+1=0

(λ+1)3=0(\lambda+1)^3=0

λ1=λ2=λ3=1\lambda_1=\lambda_2=\lambda_3=-1

y1=y2=y3=ety_1=y_2=y_3=e^{-t}

Wronskian test for independence.

Let us calculate the Wronskian:

W=det(y1y2y3y1y2y3y1y2y3)=det(etetetetetetetetet)=3et(e2t+e2t)=0W=det\begin{pmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{pmatrix}=det\begin{pmatrix} e^{-t} & e^{-t} & e^{-t} \\ -e^{-t} & -e^{-t} & -e^{-t} \\ e^{-t} & e^{-t} & e^{-t} \end{pmatrix}=3e^{-t}(-e^{-2t}+e^{-2t})=0

W=0, so y1, y2,y3 are dependent. So

yp(t)=f(t)=(x+40)ety_p(t)=f(t)=(x+40)e^{-t}

Answer: y(x)=3ce-x+(x+40)e-x=e-x(3c+x+40)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS