Consider Euler equation:
x 2 y ′ ′ − 3 x y ′ + 40 y = 0 x^2y''-3xy'+40y=0 x 2 y ′′ − 3 x y ′ + 40 y = 0
This is Euler Equation.
Let y ( x ) = x r y(x)=x^r y ( x ) = x r ; then:
r ( r − 1 ) − 3 r + 40 = 0 r(r-1)-3r+40=0 r ( r − 1 ) − 3 r + 40 = 0
r 2 − 4 r + 40 = 0 r^2-4r+40=0 r 2 − 4 r + 40 = 0
r 1 , 2 = 4 − 16 − 160 2 = 2 ± 6 i r_{1,2}=\frac{4-\sqrt{16-160}}{2}=2\pm6i r 1 , 2 = 2 4 − 16 − 160 = 2 ± 6 i
The general solution is
y ( x ) = y 1 ( x ) + y 2 ( x ) = x 2 ( c 1 c o s ( 6 l n x ) + c 2 s i n ( 6 l n x ) ) y(x)=y_1(x)+y_2(x)=x^2(c_1cos(6lnx)+c_2sin(6lnx)) y ( x ) = y 1 ( x ) + y 2 ( x ) = x 2 ( c 1 cos ( 6 l n x ) + c 2 s in ( 6 l n x ))
Now consider equation
y ′ ′ − 3 x y + 40 x 2 = s i n ( l n x ) y''-\frac{3}{x}y+\frac{40}{x^2}=sin(lnx) y ′′ − x 3 y + x 2 40 = s in ( l n x )
This is equation of the form:
y ′ ′ + a ( x ) y ′ + b ( x ) y = f ( x ) y''+a(x)y'+b(x)y=f(x) y ′′ + a ( x ) y ′ + b ( x ) y = f ( x )
The Wronskian is
W ( x ) = c ⋅ e x p { − ∫ a ( x ) d x } W(x)=c\cdot exp\{-\intop a(x)dx\} W ( x ) = c ⋅ e x p { − ∫ a ( x ) d x }
W ( x ) = c e − 3 l n x = c 3 x W(x)=ce^{-3lnx}=c_3x W ( x ) = c e − 3 l n x = c 3 x
The particular solution:
y p ( x ) = − y 1 ( x ) ∫ y 2 ( x ) f ( x ) W ( x ) d x + y 2 ( x ) ∫ y 1 ( x ) f ( x ) W ( x ) d x y_p(x)=-y_1(x)\intop \frac{y_2(x)f(x)}{W(x)}dx+y_2(x)\intop \frac{y_1(x)f(x)}{W(x)}dx y p ( x ) = − y 1 ( x ) ∫ W ( x ) y 2 ( x ) f ( x ) d x + y 2 ( x ) ∫ W ( x ) y 1 ( x ) f ( x ) d x
∫ y 2 ( x ) f ( x ) W ( x ) d x = c 2 c 3 ∫ x 2 s i n ( 6 l n x ) s i n ( l n x ) x d x = \intop \frac{y_2(x)f(x)}{W(x)}dx=\frac{c_2}{c_3}\intop\frac{x^2sin(6lnx)sin(lnx)}{x}dx= ∫ W ( x ) y 2 ( x ) f ( x ) d x = c 3 c 2 ∫ x x 2 s in ( 6 l n x ) s in ( l n x ) d x =
= c 2 c 3 x 2 ( 265 s i n ( 5 l n x ) − 203 s i n ( 7 l n x ) + 106 c o s ( 5 l n x ) − 58 c o s ( 7 l n x ) ) 3074 =\frac{c_2}{c_3}\frac{x^2(265sin(5lnx)-203sin(7lnx)+106cos(5lnx)-58cos(7lnx))}{3074} = c 3 c 2 3074 x 2 ( 265 s in ( 5 l n x ) − 203 s in ( 7 l n x ) + 106 cos ( 5 l n x ) − 58 cos ( 7 l n x ))
∫ y 1 ( x ) f ( x ) W ( x ) d x = c 1 c 3 ∫ x 2 c o s ( 6 l n x ) s i n ( l n x ) x d x = \intop \frac{y_1(x)f(x)}{W(x)}dx=\frac{c_1}{c_3}\intop\frac{x^2cos(6lnx)sin(lnx)}{x}dx= ∫ W ( x ) y 1 ( x ) f ( x ) d x = c 3 c 1 ∫ x x 2 cos ( 6 l n x ) s in ( l n x ) d x =
= c 1 c 3 x 2 ( − 106 s i n ( 5 l n x ) + 58 s i n ( 7 l n x ) + 265 c o s ( 5 l n x ) − 203 c o s ( 7 l n x ) ) 3074 =\frac{c_1}{c_3}\frac{x^2(-106sin(5lnx)+58sin(7lnx)+265cos(5lnx)-203cos(7lnx))}{3074} = c 3 c 1 3074 x 2 ( − 106 s in ( 5 l n x ) + 58 s in ( 7 l n x ) + 265 cos ( 5 l n x ) − 203 cos ( 7 l n x ))
The general solution of the initial equation:
y ( x ) = y 1 ( x ) + y 2 ( x ) + y p ( x ) y(x)=y_1(x)+y_2(x)+y_p(x) y ( x ) = y 1 ( x ) + y 2 ( x ) + y p ( x )
Comments