Question #160351

Solve the following equations using Wronskian’s method

x²d²y/dx²-3xdy/dx+40y=x²sin(logx)


1
Expert's answer
2021-02-03T01:26:49-0500

Consider Euler equation:

x2y3xy+40y=0x^2y''-3xy'+40y=0

This is Euler Equation.

Let y(x)=xry(x)=x^r ; then:

r(r1)3r+40=0r(r-1)-3r+40=0

r24r+40=0r^2-4r+40=0

r1,2=4161602=2±6ir_{1,2}=\frac{4-\sqrt{16-160}}{2}=2\pm6i

The general solution is

y(x)=y1(x)+y2(x)=x2(c1cos(6lnx)+c2sin(6lnx))y(x)=y_1(x)+y_2(x)=x^2(c_1cos(6lnx)+c_2sin(6lnx))


Now consider equation

y3xy+40x2=sin(lnx)y''-\frac{3}{x}y+\frac{40}{x^2}=sin(lnx)

This is equation of the form:

y+a(x)y+b(x)y=f(x)y''+a(x)y'+b(x)y=f(x)

The Wronskian is

W(x)=cexp{a(x)dx}W(x)=c\cdot exp\{-\intop a(x)dx\}

W(x)=ce3lnx=c3xW(x)=ce^{-3lnx}=c_3x


The particular solution:

yp(x)=y1(x)y2(x)f(x)W(x)dx+y2(x)y1(x)f(x)W(x)dxy_p(x)=-y_1(x)\intop \frac{y_2(x)f(x)}{W(x)}dx+y_2(x)\intop \frac{y_1(x)f(x)}{W(x)}dx


y2(x)f(x)W(x)dx=c2c3x2sin(6lnx)sin(lnx)xdx=\intop \frac{y_2(x)f(x)}{W(x)}dx=\frac{c_2}{c_3}\intop\frac{x^2sin(6lnx)sin(lnx)}{x}dx=

=c2c3x2(265sin(5lnx)203sin(7lnx)+106cos(5lnx)58cos(7lnx))3074=\frac{c_2}{c_3}\frac{x^2(265sin(5lnx)-203sin(7lnx)+106cos(5lnx)-58cos(7lnx))}{3074}


y1(x)f(x)W(x)dx=c1c3x2cos(6lnx)sin(lnx)xdx=\intop \frac{y_1(x)f(x)}{W(x)}dx=\frac{c_1}{c_3}\intop\frac{x^2cos(6lnx)sin(lnx)}{x}dx=

=c1c3x2(106sin(5lnx)+58sin(7lnx)+265cos(5lnx)203cos(7lnx))3074=\frac{c_1}{c_3}\frac{x^2(-106sin(5lnx)+58sin(7lnx)+265cos(5lnx)-203cos(7lnx))}{3074}


The general solution of the initial equation:

y(x)=y1(x)+y2(x)+yp(x)y(x)=y_1(x)+y_2(x)+y_p(x)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS