Consider Euler equation:
x2y′′−3xy′+40y=0
This is Euler Equation.
Let y(x)=xr ; then:
r(r−1)−3r+40=0
r2−4r+40=0
r1,2=24−16−160=2±6i
The general solution is
y(x)=y1(x)+y2(x)=x2(c1cos(6lnx)+c2sin(6lnx))
Now consider equation
y′′−x3y+x240=sin(lnx)
This is equation of the form:
y′′+a(x)y′+b(x)y=f(x)
The Wronskian is
W(x)=c⋅exp{−∫a(x)dx}
W(x)=ce−3lnx=c3x
The particular solution:
yp(x)=−y1(x)∫W(x)y2(x)f(x)dx+y2(x)∫W(x)y1(x)f(x)dx
∫W(x)y2(x)f(x)dx=c3c2∫xx2sin(6lnx)sin(lnx)dx=
=c3c23074x2(265sin(5lnx)−203sin(7lnx)+106cos(5lnx)−58cos(7lnx))
∫W(x)y1(x)f(x)dx=c3c1∫xx2cos(6lnx)sin(lnx)dx=
=c3c13074x2(−106sin(5lnx)+58sin(7lnx)+265cos(5lnx)−203cos(7lnx))
The general solution of the initial equation:
y(x)=y1(x)+y2(x)+yp(x)
Comments