Solve the following equations using Wronskian’s method
x²d²y/dx²-3xdy/dx+40y=x²sin(logx)
Consider Euler equation:
"x^2y''-3xy'+40y=0"
This is Euler Equation.
Let "y(x)=x^r" ; then:
"r(r-1)-3r+40=0"
"r^2-4r+40=0"
"r_{1,2}=\\frac{4-\\sqrt{16-160}}{2}=2\\pm6i"
The general solution is
"y(x)=y_1(x)+y_2(x)=x^2(c_1cos(6lnx)+c_2sin(6lnx))"
Now consider equation
"y''-\\frac{3}{x}y+\\frac{40}{x^2}=sin(lnx)"
This is equation of the form:
"y''+a(x)y'+b(x)y=f(x)"
The Wronskian is
"W(x)=c\\cdot exp\\{-\\intop a(x)dx\\}"
"W(x)=ce^{-3lnx}=c_3x"
The particular solution:
"y_p(x)=-y_1(x)\\intop \\frac{y_2(x)f(x)}{W(x)}dx+y_2(x)\\intop \\frac{y_1(x)f(x)}{W(x)}dx"
"\\intop \\frac{y_2(x)f(x)}{W(x)}dx=\\frac{c_2}{c_3}\\intop\\frac{x^2sin(6lnx)sin(lnx)}{x}dx="
"=\\frac{c_2}{c_3}\\frac{x^2(265sin(5lnx)-203sin(7lnx)+106cos(5lnx)-58cos(7lnx))}{3074}"
"\\intop \\frac{y_1(x)f(x)}{W(x)}dx=\\frac{c_1}{c_3}\\intop\\frac{x^2cos(6lnx)sin(lnx)}{x}dx="
"=\\frac{c_1}{c_3}\\frac{x^2(-106sin(5lnx)+58sin(7lnx)+265cos(5lnx)-203cos(7lnx))}{3074}"
The general solution of the initial equation:
"y(x)=y_1(x)+y_2(x)+y_p(x)"
Comments
Leave a comment