Question #160262

The function f(x,y,z)=max{y/x} is a homogeneous function on R².is it true or false.give reasons for your answer


1
Expert's answer
2021-02-03T13:41:02-0500

Solution: False.     A homogeneous real valued function of two variable x and y is a real valued function that satisfies the condition f(rx,ry)=rkf(x,y),for some constant k and all real number r.   Now, the given real valued function of two variable is f(x,y)=max{yx,x}Putting x=rx, and y=ry ,we get,f(rx,ry)=max{ryrx,rx}                 =max{yx,rx}                 rkf(x,y) ,for some constant k and all real number r.Hence,f is not a homogeneous function.Solution:~ False. \\~~~~~ A ~homogeneous ~ real ~ valued~ function~ of ~two ~variable ~ x ~ and ~y ~ \\is ~a ~real ~ valued~ function~ that ~satisfies ~the ~condition~ f(rx,ry)=r^k f(x,y), \\ for ~some ~constant ~ k~ and ~all ~real ~ number ~ r. \\~~~Now,~ the ~given ~ real ~valued ~ function ~ of ~ two ~variable~ is ~ f(x,y)=max\{\frac{y}{x},x\} \\Putting ~ x=rx, ~ and ~ y=ry~ , we ~get, \\f(rx,ry)=max\{\frac{ry}{rx},rx\} \\~~~~~~~~~~~~~~~~~=max\{\frac{y}{x},rx\} \\~~~~~~~~~~~~~~~~~\neq r^k f(x,y)~ ,for ~some ~constant ~ k~ and ~all ~ real ~ number ~ r. \\Hence ,f~ is ~not ~ a ~ homogeneous ~function.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS