We will substitute solution of the form y=∑k=0+∞Akxk in the equation. We receive: y′=∑k=1+∞kAkxk−1 and y′′=∑k=2+∞k(k−1)Akxk−2. After subsitution we receive: 2x∑k=2+∞k(k−1)Akxk−2+(x+1)∑k=1+∞kAkxk−1+3∑k=0+∞Akxk=0.
We simplify and receive:
2∑k=2+∞k(k−1)Akxk−1+∑k=1+∞kAkxk+∑k=1+∞kAkxk−1+3∑k=0+∞Akxk=0.
We change summation indices and get:
2∑j=1+∞(j+1)jAj+1xj+∑k=1+∞kAkxk+∑j=0+∞(j+1)Aj+1xj+3∑k=0+∞Akxk=0.
Finally, we get: A1+3A0+2∑k=1+∞(k+1)kAk+1xk+∑k=1+∞kAkxk+∑k=1+∞(k+1)Ak+1xk+3∑k=1+∞Akxk=0
We obtain:
A1+3A0+∑k=1+∞((k+1)(2k+1)Ak+1+(k+3)Ak)xk=0
Thus, we can choose an arbitrary A0 and then set A1=−3A0, 6A2+4A1=0, 15A3+5A2=0
As a result, we received the recurrence formula for the coefficients given by: A1=−3A0, A2=−32A1, A3=−31A2,... In general, for k≥1 we get: (k+1)(2k+1)Ak+1+(k+3)Ak=0.
Comments
Leave a comment