Answer to Question #160235 in Differential Equations for Sohana Behera

Question #160235

2xy′′ + (x+1)y ′ +3y = 0; Find the series solution of the following equations near x = 0:


1
Expert's answer
2021-02-02T05:45:21-0500

We will substitute solution of the form y=k=0+Akxky=\sum_{k=0}^{+\infty}A_kx^k in the equation. We receive: y=k=1+kAkxk1y'=\sum_{k=1}^{+\infty}kA_kx^{k-1} and y=k=2+k(k1)Akxk2y''=\sum_{k=2}^{+\infty}k(k-1)A_kx^{k-2}. After subsitution we receive: 2xk=2+k(k1)Akxk2+(x+1)k=1+kAkxk1+3k=0+Akxk=02x\sum_{k=2}^{+\infty}k(k-1)A_kx^{k-2}+(x+1)\sum_{k=1}^{+\infty}kA_kx^{k-1}+3\sum_{k=0}^{+\infty}A_kx^k=0.

We simplify and receive:

2k=2+k(k1)Akxk1+k=1+kAkxk+k=1+kAkxk1+3k=0+Akxk=02\sum_{k=2}^{+\infty}k(k-1)A_kx^{k-1}+\sum_{k=1}^{+\infty}kA_kx^{k}+\sum_{k=1}^{+\infty}kA_kx^{k-1}+3\sum_{k=0}^{+\infty}A_kx^k=0.

We change summation indices and get:

2j=1+(j+1)jAj+1xj+k=1+kAkxk+j=0+(j+1)Aj+1xj+3k=0+Akxk=02\sum_{j=1}^{+\infty}(j+1)jA_{j+1}x^{j}+\sum_{k=1}^{+\infty}kA_kx^{k}+\sum_{j=0}^{+\infty}(j+1)A_{j+1}x^{j}+3\sum_{k=0}^{+\infty}A_kx^k=0.

Finally, we get: A1+3A0+2k=1+(k+1)kAk+1xk+k=1+kAkxk+k=1+(k+1)Ak+1xk+3k=1+Akxk=0A_1+3A_0+2\sum_{k=1}^{+\infty}(k+1)kA_{k+1}x^{k}+\sum_{k=1}^{+\infty}kA_kx^{k}+\sum_{k=1}^{+\infty}(k+1)A_{k+1}x^{k}+3\sum_{k=1}^{+\infty}A_kx^k=0

We obtain:

A1+3A0+k=1+((k+1)(2k+1)Ak+1+(k+3)Ak)xk=0A_1+3A_0+\sum_{k=1}^{+\infty}((k+1)(2k+1)A_{k+1}+(k+3)A_k)x^k=0

Thus, we can choose an arbitrary A0A_0 and then set A1=3A0A_1=-3A_0, 6A2+4A1=06A_2+4A_1=0, 15A3+5A2=015A_3+5A_2=0

As a result, we received the recurrence formula for the coefficients given by: A1=3A0,A_1=-3A_0, A2=23A1A_2=-\frac23A_1, A3=13A2,A_3=-\frac13A_2,... In general, for k1k\geq1 we get: (k+1)(2k+1)Ak+1+(k+3)Ak=0(k+1)(2k+1)A_{k+1}+(k+3)A_k=0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment