1. (2y - x )y' = 2x + y
We use the substitution: y = xu, y' = u+xu', then
(2xu-x)(u+xu') = 2x+xu
xdxdu=2u−12+u−u=2u−12+u−2u2+u=−22u−1u2−u−1
This is an equation with separable variables.
Consider one of the possible solutions - with constant functions u(x) such that u2-u-1=0
Then u(x)=(1±5)/2 and y(x)=x(1±5)/2.
These solutions do not satisfy to the initial condition y(2) = 3.
u2−u−12u−1du=−x2dx=−2d(ln∣x∣)=−d(lnx2)
u2−u−12u−1du=u2−u−1d(u2−u)=d(ln∣u2−u−1∣) , therefore,
d(ln(x2∣u2−u−1∣))=0
d(x2(u2−u−1))=0
x2(u2−u−1)=c
u2−u−1=cx−2
y2−xy−x2=c
c=y(2)2−2y(2)−22=9−6−4=−1
y2−xy−x2+1=0
y=(x±5x2−4)/2
3=y(2)=(2±4)/2 , therefore, one should choose the sign "+".
Answer. y=(x+5x2−4)/2
2. (xy+y2)+(x2−xy)dy/dx=0
We use the substitution: y = xu, y' = u+xu', then
x2(u+u2)+x2(1−u)(u+xu′)=0
2u+x(1−u)u′=0
u=0 or 2uu−1du=xdx
y=0 or u/2−ln∣u∣=ln∣x∣+c
y=0 or y/(2x)−ln∣y∣=c
y=0 or y−xlny2=2cx
Answer. y=0 or y−xlny2=2cx
Comments