1 . (2y - x )y' = 2x + y
We use the substitution: y = xu, y' = u+xu', then
(2xu-x)(u+xu') = 2x+xu
x d u d x = 2 + u 2 u − 1 − u = 2 + u − 2 u 2 + u 2 u − 1 = − 2 u 2 − u − 1 2 u − 1 x\frac{du}{dx}= \frac{2+u}{2u-1}-u = \frac{2+u - 2u^2+u}{2u-1} = -2\frac{u^2-u-1}{2u-1} x d x d u = 2 u − 1 2 + u − u = 2 u − 1 2 + u − 2 u 2 + u = − 2 2 u − 1 u 2 − u − 1
This is an equation with separable variables.
Consider one of the possible solutions - with constant functions u(x) such that u2 -u-1=0
Then u ( x ) = ( 1 ± 5 ) / 2 u(x) = (1\pm\sqrt{5})/2 u ( x ) = ( 1 ± 5 ) /2 and y ( x ) = x ( 1 ± 5 ) / 2 y(x) = x(1\pm\sqrt{5})/2 y ( x ) = x ( 1 ± 5 ) /2 .
These solutions do not satisfy to the initial condition y(2) = 3.
2 u − 1 u 2 − u − 1 d u = − 2 x d x = − 2 d ( ln ∣ x ∣ ) = − d ( ln x 2 ) \frac{2u-1}{u^2-u-1}du = -\frac{2}{x}dx=-2d(\ln |x|)=-d(\ln x^2) u 2 − u − 1 2 u − 1 d u = − x 2 d x = − 2 d ( ln ∣ x ∣ ) = − d ( ln x 2 )
2 u − 1 u 2 − u − 1 d u = d ( u 2 − u ) u 2 − u − 1 = d ( ln ∣ u 2 − u − 1 ∣ ) \frac{2u-1}{u^2-u-1}du = \frac{d(u^2-u)}{u^2-u-1} = d(\ln|u^2-u-1|) u 2 − u − 1 2 u − 1 d u = u 2 − u − 1 d ( u 2 − u ) = d ( ln ∣ u 2 − u − 1∣ ) , therefore,
d ( ln ( x 2 ∣ u 2 − u − 1 ∣ ) ) = 0 d(\ln(x^2|u^2-u-1|))=0 d ( ln ( x 2 ∣ u 2 − u − 1∣ )) = 0
d ( x 2 ( u 2 − u − 1 ) ) = 0 d(x^2(u^2-u-1))=0 d ( x 2 ( u 2 − u − 1 )) = 0
x 2 ( u 2 − u − 1 ) = c x^2(u^2-u-1)=c x 2 ( u 2 − u − 1 ) = c
u 2 − u − 1 = c x − 2 u^2-u-1=cx^{-2} u 2 − u − 1 = c x − 2
y 2 − x y − x 2 = c y^2-xy-x^2=c y 2 − x y − x 2 = c
c = y ( 2 ) 2 − 2 y ( 2 ) − 2 2 = 9 − 6 − 4 = − 1 c=y(2)^2-2y(2)-2^2=9-6-4=-1 c = y ( 2 ) 2 − 2 y ( 2 ) − 2 2 = 9 − 6 − 4 = − 1
y 2 − x y − x 2 + 1 = 0 y^2-xy-x^2+1=0 y 2 − x y − x 2 + 1 = 0
y = ( x ± 5 x 2 − 4 ) / 2 y=(x\pm\sqrt{5x^2-4})/2 y = ( x ± 5 x 2 − 4 ) /2
3 = y ( 2 ) = ( 2 ± 4 ) / 2 3 = y(2) = (2\pm 4)/2 3 = y ( 2 ) = ( 2 ± 4 ) /2 , therefore, one should choose the sign "+".
Answer. y = ( x + 5 x 2 − 4 ) / 2 y=(x+\sqrt{5x^2-4})/2 y = ( x + 5 x 2 − 4 ) /2
2 . ( x y + y 2 ) + ( x 2 − x y ) d y / d x = 0 ( xy + y^2) + ( x^2 - xy) dy/dx =0 ( x y + y 2 ) + ( x 2 − x y ) d y / d x = 0
We use the substitution: y = xu, y' = u+xu', then
x 2 ( u + u 2 ) + x 2 ( 1 − u ) ( u + x u ′ ) = 0 x^2( u + u^2) + x^2 (1 - u) (u+xu') =0 x 2 ( u + u 2 ) + x 2 ( 1 − u ) ( u + x u ′ ) = 0
2 u + x ( 1 − u ) u ′ = 0 2u+x(1-u)u' = 0 2 u + x ( 1 − u ) u ′ = 0
u = 0 u=0 u = 0 or u − 1 2 u d u = d x x \frac{u-1}{2u}du = \frac{dx}{x} 2 u u − 1 d u = x d x
y = 0 y=0 y = 0 or u / 2 − ln ∣ u ∣ = ln ∣ x ∣ + c u/2 -\ln|u|=\ln|x|+c u /2 − ln ∣ u ∣ = ln ∣ x ∣ + c
y = 0 y=0 y = 0 or y / ( 2 x ) − ln ∣ y ∣ = c y/(2x) -\ln|y| = c y / ( 2 x ) − ln ∣ y ∣ = c
y = 0 y=0 y = 0 or y − x ln y 2 = 2 c x y -x\ln y^2 = 2cx y − x ln y 2 = 2 c x
Answer. y = 0 y=0 y = 0 or y − x ln y 2 = 2 c x y -x\ln y^2 = 2cx y − x ln y 2 = 2 c x
Comments