Question #159528

Solve the differential equations using homogeneous equation.

1. ( 2y - x )dy/dx = 2x + y given that y=3 and x=2.

2. ( xy + y square) + ( x square - xy) dy/dx =0


1
Expert's answer
2021-02-01T07:37:35-0500

1. (2y - x )y' = 2x + y

We use the substitution: y = xu, y' = u+xu', then

(2xu-x)(u+xu') = 2x+xu

xdudx=2+u2u1u=2+u2u2+u2u1=2u2u12u1x\frac{du}{dx}= \frac{2+u}{2u-1}-u = \frac{2+u - 2u^2+u}{2u-1} = -2\frac{u^2-u-1}{2u-1}

This is an equation with separable variables.

Consider one of the possible solutions - with constant functions u(x) such that u2-u-1=0

Then u(x)=(1±5)/2u(x) = (1\pm\sqrt{5})/2 and y(x)=x(1±5)/2y(x) = x(1\pm\sqrt{5})/2.

These solutions do not satisfy to the initial condition y(2) = 3.

2u1u2u1du=2xdx=2d(lnx)=d(lnx2)\frac{2u-1}{u^2-u-1}du = -\frac{2}{x}dx=-2d(\ln |x|)=-d(\ln x^2)

2u1u2u1du=d(u2u)u2u1=d(lnu2u1)\frac{2u-1}{u^2-u-1}du = \frac{d(u^2-u)}{u^2-u-1} = d(\ln|u^2-u-1|) , therefore,

d(ln(x2u2u1))=0d(\ln(x^2|u^2-u-1|))=0

d(x2(u2u1))=0d(x^2(u^2-u-1))=0

x2(u2u1)=cx^2(u^2-u-1)=c

u2u1=cx2u^2-u-1=cx^{-2}

y2xyx2=cy^2-xy-x^2=c

c=y(2)22y(2)22=964=1c=y(2)^2-2y(2)-2^2=9-6-4=-1

y2xyx2+1=0y^2-xy-x^2+1=0

y=(x±5x24)/2y=(x\pm\sqrt{5x^2-4})/2

3=y(2)=(2±4)/23 = y(2) = (2\pm 4)/2 , therefore, one should choose the sign "+".

Answer. y=(x+5x24)/2y=(x+\sqrt{5x^2-4})/2


2. (xy+y2)+(x2xy)dy/dx=0( xy + y^2) + ( x^2 - xy) dy/dx =0

We use the substitution: y = xu, y' = u+xu', then

x2(u+u2)+x2(1u)(u+xu)=0x^2( u + u^2) + x^2 (1 - u) (u+xu') =0

2u+x(1u)u=02u+x(1-u)u' = 0

u=0u=0 or u12udu=dxx\frac{u-1}{2u}du = \frac{dx}{x}

y=0y=0 or u/2lnu=lnx+cu/2 -\ln|u|=\ln|x|+c

y=0y=0 or y/(2x)lny=cy/(2x) -\ln|y| = c

y=0y=0 or yxlny2=2cxy -x\ln y^2 = 2cx


Answer. y=0y=0 or yxlny2=2cxy -x\ln y^2 = 2cx

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS