(xz(y)+yz(y))z′(y)+(xz(y)−yz(y))z′(y)=x2+y2
Ordinary differential equation classification:
first order nonlinear ordinary differential equation
dydz(y)(xz(y)−yz(y))+dydz(y)(xz(y)+yz(y))=x2+y2
Solve for dydz(y)
dydz(y)=2xz(y)x2+y2
Multiply both sides by 2xz(y):
2xdydz(y)z(y)=x2+y2
Integrate both sides with respect to y:
∫2xdydz(y)z(y)dy=∫(x2+y2)dy
Evaluate the integrals:
xz(y)2=3y3+x2y+C1. where C1 is an arbitrary constant.
Solve for z(y):
Answer: z(y)=−3xy3+3x2y+3C1 or 3xy3+3x2y+3C1
Comments