Question #159388

(xz+yz)dz/dy + (xz-yz)dz/dy = x2+y2 find the general solution


1
Expert's answer
2021-02-01T08:14:16-0500

(xz(y)+yz(y))z(y)+(xz(y)yz(y))z(y)=x2+y2(xz(y)+yz(y))z'(y)+(xz(y) - yz(y))z'(y)=x^2+y^2

Ordinary differential equation classification:

first order nonlinear ordinary differential equation

dz(y)dy(xz(y)yz(y))+dz(y)dy(xz(y)+yz(y))=x2+y2\frac{\large dz(y)}{\large dy}(xz(y)-yz(y))+\frac{\large dz(y)}{\large dy}(xz(y)+yz(y))=x^2+y^2

Solve for dz(y)dy\frac{\large dz(y)}{\large dy}

  dz(y)dy=x2+y22xz(y)\space\space\frac{\large dz(y)}{\large dy} = \frac{\large x^2+y^2}{\large 2xz(y)}

Multiply both sides by 2xz(y):2xz(y):

2xdz(y)dyz(y)=x2+y22x\frac{\large dz(y)}{\large dy}z(y)=x^2+y^2

Integrate both sides with respect to y:

2xdz(y)dyz(y)dy=(x2+y2)dy\int 2x\frac{\large dz(y)}{\large dy}z(y)dy=\int (x^2+y^2)dy

Evaluate the integrals:

xz(y)2=y33+x2y+C1.xz(y)^2 = \frac{\large y^3}{\large 3}+x^2y+C_1.       where C1C_1 is an arbitrary constant.

Solve for z(y):

Answer: z(y)=y3+3x2y+3C13x or y3+3x2y+3C13xAnswer: \space z(y) = - \large\frac{\sqrt{y^3+3x^2y+3C_1}}{\sqrt{3x}} \space or \space \large\frac{\sqrt{y^3+3x^2y+3C_1}}{\sqrt{3x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS