Question #159274

. Solve 𝑥 2 𝑑 2𝑦 𝑑2𝑥 − 2 𝑑𝑦 𝑑𝑥 − 4𝑦 = 0 


1
Expert's answer
2021-01-31T16:04:47-0500

x2d2ydx22xdydx4y=0Lety=f(lnx)dydx=f(lnx)xd2ydx2=f(lnx)x2+f(lnx)x2=1x2(f(lnxf(lnx))x2(1x2(f(lnx)f(lnx)))2xf(lnx)x4f(lnx)=0f(lnx)f(lnx2f(lnx)4f(lnx)=0f(lnx)3f(lnx)4f(lnx)=0Lett(l)=f(lnx)t3t4t=0Auxiliary equation;m23m4=0m=1,4t=Ael+Be4lt=Aelnx+Be4lnxt(l)=f(lnx)=y=Ax+Bx4y=Ax+Bx4\displaystyle x^2\frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}y}{\mathrm{d}x} - 4y = 0\\ \textsf{Let}\,\, y = f(\ln{x})\\ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\ln{x})}{x}\\ \begin{aligned} \frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= -\frac{f'(\ln{x})}{x^2} + \frac{f''(\ln{x})}{x^2} &= \frac{1}{x^2}\left(f''(\ln{x} - f'(\ln{x})\right) \end{aligned} \\ x^2\left(\frac{1}{x^2}\left(f''(\ln{x}) - f'(\ln{x})\right)\right) - 2x\cdot\frac{f'(\ln{x})}{x} - 4f(\ln{x}) = 0\\ f''(\ln{x}) - f'(\ln{x} - 2f'(\ln{x}) - 4f(\ln{x}) = 0\\ f''(\ln{x}) - 3f'(\ln{x}) - 4f(\ln{x}) = 0\\ \textsf{Let}\,\, t(l) = f(\ln{x})\\ t'' - 3t' - 4t = 0\\ \textsf{Auxiliary equation}; \,\,m^2 - 3m - 4 = 0\\ m = -1, 4\\ t = Ae^{-l} + Be^{4l} \\ t = Ae^{-\ln{x}} + Be^{4\ln{x}} \\ t(l) = f(\ln{x}) = y = \frac{A}{x} + Bx^4 \\ \therefore y = \frac{A}{x} + Bx^4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS